M.Sc., Applied Microbiology

Program Outcomes:

S.No	<u>OUTCOMES</u>
PO1	The course will help them to impart the knowledge of the basic principles of microbiology ,bacteriology, mycology, immunology, virology and algal technology including the nature of pathogenic microorganisms, pathogenesis, laboratory diagnosis, transmission, prevention and control of diseases common in the country.
PO2	Students will demonstrate competency in laboratory safety and in routine and specialized microbiological laboratory skills applicable to microbiological research or clinical methods, including accurately reporting observations and analysis. Students will demonstrate engagement in the Microbiology discipline through involvement in research or internship activities.
PO3	so it understand the relationship between the science and society by recognizing and discussing logical, scientific and ethical issues in Microbiology.
PO4	is program outcomes will help the students to learn the theoretical and practical view of the syllabus. It will help them to understand the courses fundamentally and its outcomes to develop their subject skills
PO5	Communicate and collaborate with other disciplines by effectively communicating the fundamental concepts of Microbiology in written and oral format. Identify credible scientific sources to interpret and evaluate the evidences.
PO6	Critically and analytically evaluate and interpret research based data to provide valid conclusions and solutions.
PO7	Apply ethical principles, commit to professional ethics and responsibilities and norms of the scientific practice.
PO8	Engage in life-long learning in the broadest context of scientific advancement.
PO9	Foster learning through accumulation of knowledge in Science.
PO10	Demonstrate leadership qualities by working collaboratively in a team, to set goals, communicate scientific information to stakeholders, comprehend and write reports, develop documentation, make presentation and to give and receive clear instructions.

Program specific Outcomes:

S.No	<u>OUTCOMES</u>
	general course emphasizing distribution, morphology and physiology of microorganisms in addition to
PSO1	skills in aseptic procedures, isolation and identification of microorganism from plant, animal, food,
	water, soil and human.
	successful completion of graduation for UG and PG students will gain insight of Microbiology
PSO2	starting from history, basic laboratory techniques and fundamental knowledge about the
	microorganisms.
DG O 2	e skill enhancement elective course such as algal technology, mushroom cultivation and herbal
PSO3	technology to develop their knowledge.
	They will be well-informative about the integral role of microorganisms associated with specific
PSO4	disease, vital role of microorganisms in biotechnology, fermentation, medicine, and other industries
	important to human well being.
D G 0 =	It will acquire the skill in the use and care of basic microbiological equipment; performance of basic
PSO5	laboratory procedures in microbiology; proper collection and forwarding of microbiological.
	Apply basic concepts/ theories of Life Sciences for solving current scientific and social issues in
PSO6	key fields such as agriculture, environment, human health, transgenic animals, GMOs and plant disease
	management
	Plan and design systematic research activities in the field of Microbiology and allied sciences including
PSO7	necessary skills for collecting, processing and interpreting data and drawing logical inferences
DCOO	Communicate and analyze the core concepts and theories in Microbiology and allied sciences
PSO8	
PSO9	Understand the applications of Microbiological sciences in Agriculture, Medicine, Environment etc.
PSO10	Analyse the relationships among microbes and plants/ animals/ humans

SEMESTER-I PAPER- 1 GENERAL MICROBIOLOGY AND MICROBIAL PHYSIOLOGY

SUBJECT CODE: MAM11 CREDITS:05 NO.OF.HOURS/ WEEK:06 TOTAL HOURS:77

Course Outcomes

Semest er	Course Name	Cours e Credit	Course Outcomes
I (Regula tion 2017-2018) Semester-I	General Microbi ology and Microbi al Physiol ogy	5	CO1-Students will learn the modern trends in microbial taxonomy. CO2- Students will able to understand the working of various microscope and their applications CO3- Students will learn the techniques of studying bacterial growth curve and factors affecting growth curve. CO4- Students will able to demonstrate and understanding of bacterial, fungal, cyanobacterial, viral classifications, culturing, reproduction and significance CO5- Students will learn basic concepts of metabolism CO6-The Students will able to demonstrate the structure and function of viruses.

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	M	S	M	M	S
CO2	S	S	S	M	S	M	S	L	M	M
CO3	S	M	S	M	S	M	S	M	M	S
CO4	S	S	M	M	S	M	S	S	M	M
CO5	S	M	S	M	S	L	S	M	L	M

PO- Programme outcome, CO- Course outcome

FOOD, AGRICULTURE AND ENVIRONMENTAL MICROBIOLOGY PAPER - 2

SUBJECT CODE: MAM12 CREDITS: 05

NO.OF.HOURS/ WEEK: 06 TOTAL HOURS: 77

Semes	Course	Course	Course Outcomes
ter	Name	Credit	
I Regul ation (2017- 18)	Food, Agriculture and Environme ntal Microbiolo gy	05	CO1- Students will able to Importance of studying food and dairy microbiology know the factors affecting the growth and survival of microorganisms in foods CO2- Students will able to understand Food control agencies and its regulations, HACCP Methods. CO3- Students will learn the manufacture of fermented foods CO4-Students will able to know the Role of microorganisms in soil fertility. CO5-Students will learn the assessment of microbiological quality of water.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	M	S	S	L	S	M
CO2	S	M	S	S	M	S	M	S	M	S
CO3	S	S	M	S	M	S	M	M	M	S
CO4	S	S	S	S	M	L	S	S	S	M
CO5	S	M	S	S	M	S	S	S	L	S

PO- Programme outcome, CO- Course outcome

IMMUNOTECHNOLOGY PAPER - 3

SUBJECT CODE: MAM13 CREDITS: 05

NO.OF.HOURS/ WEEK:05 TOTAL HOURS: 65

Semes ter	Course Name	Cours e Credit	Course Outcomes
I Regul ation (2017- 18)	Immunote chnology	05	CO1- Students will able to acquire skills and competence in specialized immunological techniques in the diagnosis. CO2- Students will able to Impart knowledge about the underlying concepts of molecular and cellular mechanisms involved in the development and regulation of the immune response. CO3- Students will able to outline the Immunology and Immunotechnology. CO4- Students will learn the milestones in immunology - evolution of immunology CO5- Students will able to Monoclonal antibody production and hybridoma technology.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	M	S	S	S	L
CO2	S	M	S	S	M	S	M	S	S	S
CO3	S	M	S	S	M	S	S	M	S	S
CO4	S	S	S	M	S	M	M	S	S	L
CO5	S	S	S	S	S	M	S	S	S	M

PO- Programme outcome, CO- Course outcome

HUMAN ANATOMY AND PHYSIOLOGY

PAPER - 4

SUBJECT CODE: MAM14 CREDITS: 04

NO.OF.HOURS/ WEEK: 05 TOTAL HOURS: 65

Semes	Course Name	Cours e	Course Outcomes
ter	Name	Credit	
I Regul ation (2017- 18)	Human anatomy and physiology	04	CO1- The Students will able to understand the introduction to applied human anatomy and physiology. CO2- The Students will able to understand the Different organs associated with the Gastro Intestinal system: Salivary glands, Pancreas, Liver and Gall bladder and others. CO3- The Students will able to demonstrate the Different organs and Functions of Urinary System. CO4- The Students will able to understand Musculoskeletal System CO5- The Students will able to understand the Different organs and Functions of endocrine system.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	M	S	S	S	L
CO2	S	M	S	S	S	S	M	S	S	M
CO3	S	M	S	S	M	S	S	M	S	S
CO4	S	S	S	M	S	M	M	S	S	S
CO5	S	S	S	S	S	M	S	S	S	M

PO- Programme outcome, CO- Course outcome

Microbial Biotechnology

ELECTIVE PAPER - 1 C

SUBJECT CODE:MAM15C CREDITS: 03

NO.OF.HOURS/ WEEK:03 TOTAL HOURS: 39

Semes	Course	Cours e	Course Outcomes
ter	Name	Credit	
			CO1- Students will able to understand the biotechnological potentials of microalgae
I Regul		04	CO2- Students able to illustrate the production of microbial biofertilizers .
ation	Microbial		CO3- Students will able to learn the microbial herbicides.
(2017- 18)	Biotechnolog y		CO4- Students will able to perform the different production microbial products.
			CO5- Students will learn the knowledge of biodegradation of oil and petroleum products

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	M	S	S	S	L
CO2	S	M	S	S	S	S	M	S	S	M
CO3	S	M	S	S	M	S	S	M	S	S
CO4	S	S	S	M	S	M	M	S	S	S
CO5	S	S	S	S	S	M	S	S	S	M

PO- Programme outcome, CO- Course outcome

SEMESTER-II

PAPER - 5

SUBJECT NAME: MEDICAL MICROBIOLOGY

SUBJECT CODE: MAM21 CREDITS: 05

NO.OF.HOURS/ WEEK: 05 TOTAL HOURS: 65

Semes ter	Course Name	Cours e Credit	Course Outcomes
II Regul ation (2017- 18)	Medical Microbiol ogy	05	CO1- Students to create awareness of microbial diseases of human beings and causes and cures. CO2- The Students will able to learn the modern methods of microbial diagnosis. CO3- The Students will able to outline the bacteria and its causes. CO4- The Students will learn the milestones in virology and its vaccine production. CO5- Students would have understood the difference between mycology and parasitology

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	S	S	S	M
CO2	M	S	S	S	S	S	M	S	S	S
CO3	S	S	S	S	S	S	S	M	M	L
CO4	S	S	S	S	S	S	M	M	L	S
CO5	S	S	S	S	S	S	S	S	S	M

PO- Programme outcome, CO- Course outcome

SUBJECT NAME: MICROBIAL PHARMACOLOGY

SUBJECT CODE: MAM22 CREDITS: 04

NO.OF.HOURS/ WEEK: 05 TOTAL HOURS: 65

Semes ter	Course Name	Cours e Credit	Course Outcomes						
		Credit	CO1- Students would have understood how the general principles of Microbial Pharmacology.						
II Regul			CO2- By the end, of the course, students would have gained knowledge about the recent advances of drug affecting.						
ation (2017- 18)	Microbial Pharmaco	05	CO3- Students would have learnt some aspects of drugs used for immunomodolation, immunostimulants and Immunosuppresants.						
10)	logy	03	CO4- Students would have gained an understanding of Hormones and Hormone Antagonists						
			CO5- Students would have understood the Essential drug concepts.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	M	M
CO2	S	S	S	S	M	S	S	SM	M	L
CO3	S	S	S	S	M	SL	S	S	S	S
CO4	S	S	S	S	S	M	M	L	S	S
CO5	S	S	S	M	L	S	S	S	S	M

PO- Programme outcome, CO- Course outcome

SUBJECT NAME: BIOINFORMATICS AND BIOSTATISTICS SUBJECT CODE: MAM23 CREDITS: 04

NO.OF.HOURS/ WEEK: 05 TOTAL HOURS:65

Seme	Course	Course	Course Outcomes
ster	Name	Credit	
II Regu lation (2017 -18)	Bioinforma tics and biostatistics	05	CO1- Students Relate the Computational Approaches to Biological questions CO2- Students will able to Correlate Sequence analysis and phylogenetic analysis CO3- Students an understanding of the main social issues covered by the module; The Social History of England, 1500-1700. CO4- Students will able to learn t an opportunity to develop genomics and proteomics CO5- The Students will able to outline the further development of the Predicting Protein structure and function from sequence.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	M	M	M	S	S	S	L	L
CO2	S	M	M	M	M	S	S	S	S	L
CO3	S	S	S	S	S	M	M	L	S	S
CO4	S	S	S	S	S	S	M	M	M	M
CO5	S	S	S	S	S	S	M	S	S	L

PO- Programme outcome, CO- Course outcome

ELECTIVE PAPER - 2 B

SUBJECT NAME: GENETIC ENGINEERING

SUBJECT CODE: MAM24B CREDITS: 03

NO.OF.HOURS/ WEEK: 03 TOTAL HOURS: 39

Semes	Course	Cours e	Course Outcomes						
ter	Name	Credit							
II Regul ation (2017-	Genetic Engineeri ng	03	CO1- The Students will able to understand the introduction to applied human anatomy and physiology. CO2- The Students will able to understand the Enzymes in Genetic Engineering and DNA Polymerase CO3- The Students will able to demonstrate Strategy of recombinant DNA technology						
18)			CO4- The Students will able to understand Gene transfer technologies. CO5- Students will able to learn tDNA chips and microarray gene screen technology.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	S	S	S	M
CO2	M	S	S	S	S	S	M	S	S	S
CO3	S	S	S	S	S	S	S	M	M	L
CO4	S	S	S	S	S	S	M	M	L	S
CO5	S	S	S	S	S	S	S	S	S	M

PO- Programme outcome, CO- Course outcome

SUBJECT NAME: PRACTICAL I

SUBJECT CODE: MAM25 CREDITS: 05

NO.OF.HOURS/ WEEK: 05 TOTAL HOURS: 65

Semes ter	Course Name	Cours e Credit	CO1 The Students will able to understand the introduction to						
ation I	Genetic Engineeri ng	03	CO1- The Students will able to understand the introduction to applied human anatomy and physiology. CO2- The Students will able to understand the Enzymes in Genetic Engineering and DNA Polymerase CO3- The Students will able to demonstrate Strategy of recombinant DNA technology CO4- The Students will able to understand Gene transfer technologies. CO5- Students will able to learn tDNA chips and microarray gene screen technology.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	S	S	S	M
CO2	M	S	S	S	S	S	M	S	S	S
CO3	S	S	S	S	S	S	S	M	M	L
CO4	S	S	S	S	S	S	M	M	L	S
CO5	S	S	S	S	S	S	S	S	S	M

PO- Programme outcome, CO- Course outcome

SUBJECT NAME: PRACTICAL II

SUBJECT CODE: MAM26 CREDITS: 05

NO.OF.HOURS/ WEEK: 05 TOTAL HOURS: 65

Semes ter	Course Name	Cours e Credit	Course Outcomes
II Regul ation (2017- 18)	Genetic Engineeri ng	03	CO1- The Students will able to understand the introduction to applied human anatomy and physiology. CO2- The Students will able to understand the Enzymes in Genetic Engineering and DNA Polymerase CO3- The Students will able to demonstrate Strategy of recombinant DNA technology CO4- The Students will able to understand Gene transfer technologies. CO5- Students will able to learn tDNA chips and microarray gene screen technology.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	S	S	S	M
CO2	M	S	S	S	S	S	M	S	S	S
CO3	S	S	S	S	S	S	S	M	M	L
CO4	S	S	S	S	S	S	M	M	L	S
CO5	S	S	S	S	S	S	S	S	S	M

PO- Programme outcome, CO- Course outcome

SEMESTER-3

PAPER-8

SUBJECT NAME: MICROBIAL GENETICS AND MOLECULAR BIOLOGY

SUBJECT CODE: MAM31 CREDITS: 05

NO.OF.HOURS/ WEEK: 6 TOTAL HOURS: 77

Course Outcomes

Semes	Course	Cours	Course Outcomes
	Name	e	Course Outcomes
ter	Name	Credit	
			CO1- The Students will able to understand the Genetic
			Material, Recombination and Mutation.
	MICROBI	BI 05	CO2- Students will able to learn Gene Transfer mechanism,
II			Transduction and Transformations.
Regul	AL GENETICS		CO3- The Students will able to understand the Biology of
ation	AND		Plasmid, Structure of Plasmid and Extra-chromosomal heredity
(2017-	MOLECUL		CO4- Students will able to learn Transposable Genetic
18)	AR		Elements and Gene Mapping
	BIOLOGY		CO5- To understand the Concept of gene and Gene regulation

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	M	S	S	L
CO2	S	M	S	S	M	S	S	S	S	M
CO3	S	S	S	S	S	S	M	M	L	S
CO4	S	S	M	S	S	S	S	M	S	M
CO5	M	S	S	S	M	S	L	S	S	S

PO- Programme outcome, CO- Course outcome

SUBJECT NAME: RECOMBINANT DNA TECHNOLOGY

SUBJECT CODE: MAM32 CREDITS: 05

NO.OF.HOURS/ WEEK: 06 TOTAL HOURS: 77

Course Outcomes

Semes	Course	Cours e	Course Outcomes					
ter	Name	Credit						
			CO1- Students will able to understand the Basics of DNA					
			cloning					
			CO2- Students will able to learn Methods of DNA and protein					
II	RECOMBIN	05	analysis.					
Regul	ANT DNA		CO3- The Students will able to understand Construction of					
ation	TECHNOLO		cDNA and genomic DNA libraries					
(2017-	GY		CO4- Students will able to learn DNA sequencing by					
18)			Enzymatic and chemical method					
			CO5- To understand the Protein engineering and proteome					
			analysis and good laboratory procedure (GLP) and HACCP.					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	M	S	S	L
CO2	S	M	S	S	M	S	S	S	S	M
CO3	S	S	S	S	S	S	M	M	L	S
CO4	S	S	M	S	S	S	S	M	S	M
CO5	M	S	S	S	M	S	L	S	S	S

PO- Programme outcome, CO- Course outcome

SUBJECT NAME: INDUSTRIAL BIOTECHNOLOGY

SUBJECT CODE: MAM33 CREDITS: 05

NO.OF.HOURS/ WEEK: 05 TOTAL HOURS: 65

Course Outcomes

Semes	Course	Cours	Course Outcomes
	Name	e	Course Outcomes
ter	Name	Credit	
			CO1- Students to understand the microbial processes
	INDUSTRI AL BIOTECH		applicable in industries and scale-up processes
		05	CO2- Students will able to learn Industrial fermentation
II			and Downstream Processing.
Regul ation			CO3- Students will able to understand the industrial
	NOLOGY		Production of SCP
(2017- 18)			CO4- Students will able to learn Algal biotechnology:
10)			Biotechnological potential of microalgae
			CO5- Students to understand the Concept of
			Nanobiotechnology

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	M	S	S	L
CO2	S	M	S	S	M	S	S	S	S	M
CO3	S	S	S	S	S	S	M	M	L	S
CO4	S	S	M	S	S	S	S	M	S	M
CO5	M	S	S	S	M	S	L	S	S	S

PO- Programme outcome, CO- Course outcome

ELECTIVE PAPER – 3 A

SUBJECT NAME: BIOLOGICAL TECHNIQUES

SUBJECT CODE: MAM34A CREDITS: 03

NO.OF.HOURS/ WEEK: 03 TOTAL HOURS: 39

Course Outcomes

Semes ter	Course Name	Cours e Credit	Course Outcomes
II Regul ation (2017- 18)	MICROBI AL GENETICS AND MOLECUL AR BIOLOGY	05	CO1 To enable the students to understand the basic biological techmiques. CO2- Students will able to Analytical Techniques - Spectroscopic methods. CO3- The Students will able to understand Principles & Applications of Chromatographic Techniques CO4- Students will able to learn Electrophoresis Techniques CO5- To understand the Molecular Biological Techniques

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	M	S	S	L
CO2	S	M	S	S	M	S	S	S	S	M
CO3	S	S	S	S	S	S	M	M	L	S
CO4	S	S	M	S	S	S	S	M	S	M
CO5	M	S	S	S	M	S	L	S	S	S

PO- Programme outcome, CO- Course outcome

SEMESTER-4

PAPER-11

SUBJECT NAME: RESEARCH METHODOLOGY

SUBJECT CODE: MAM41 CREDITS: 04 NO.OF.HOURS/ WEEK: 06 TOTAL HOURS: 77

Course Outcomes

Semes ter	Course Name	Cou rse Cred it	Course Outcomes
II Regul ation (2017- 18)	RESEARCH METHODOLOGY	05	CO1- The student to understand the principles and applications of classical andmodern techniques in Biology. CO2- Students will able to learn Electromagnetic radiation CO3- The Students will able to understand the Autoradiography, application of radioisotopesin biological research CO4- Students will able to learn Gel documentation and molecular weight analysis. CO5-Students to understand the Amplification of 16S rRNA or specific genes using PCR techniques, RAPD, STRR and LTRR analysis using PCR.

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	M	S	S	L
CO2	S	M	S	S	M	S	S	S	S	M
CO3	S	S	S	S	S	S	M	M	L	S
CO4	S	S	M	S	S	S	S	M	S	M
CO5	M	S	S	S	M	S	L	S	S	S

PO- Programme outcome, CO- Course outcome

ELECTIVE PAPER – 4 C

SUBJECT NAME: CLINICAL MICROBIOLOGY

SUBJECT CODE: MAM42C CREDITS: 03

NO.OF.HOURS/ WEEK: 03 TOTAL HOURS: 39

Course Outcomes

Semes	Course	Cours	Course Outcomes					
	Name	e	Course Outcomes					
ter	Name	Credit						
			CO1- The Students will able to understand the Genetic					
			Material, Recombination and Mutation.					
			CO2- Students will able to learn Gene Transfer mechanism,					
II	CLINICAL	05	Transduction and Transformations.					
Regul	MICROBI OLOGY		CO3- The Students will able to understand the Biology of					
ation	OLOGI		Plasmid, Structure of Plasmid and Extra-chromosomal heredity					
(2017-			CO4- Students will able to learn Transposable Genetic					
18)			Elements and Gene Mapping					
			CO5- To understand the Concept of gene and Gene regulation					

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	M	S	S	L
CO2	S	S	S	S	M	S	S	S	L	M
CO3	S	S	S	M	S	S	M	M	L	S
CO4	S	S	M	M	S	S	S	M	S	L
CO5	M	S	S	S	M	S	L	S	S	S

PO- Programme outcome, CO- Course outcome

PAPER-11

SUBJECT NAME: PRACTICAL III

SUBJECT CODE: MAM43 CREDITS: 05

NO.OF.HOURS/ WEEK: 05 TOTAL HOURS: 65

Semes ter	Course Name	Cours e Credit	Course Outcomes
II			CO1- The Students will able to understand the Isolation of plasmid DNA from bacteria (mini preparation).
Regul ation (2017-	PRACTIC AL III	03	CO2- The Students will able to Isolation of antibiotic resistant crobes.
18)			CO3- The Students will able to demonstrate Purification of plasmids - large scale
			CO4- The Students will able to PCR amplification - 16S rRNA and RAPD ,Southern blotting
			CO5- Students will able to learn the Separation of proteins by coloum chromatography, ion exchange - gel exclusion –adsorption.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	S	S	S	M
CO2	M	S	S	S	S	S	M	S	S	S
CO3	S	S	S	S	S	S	S	M	M	L
CO4	S	S	S	S	S	S	M	M	L	S
CO5	S	S	S	S	S	S	S	S	S	M

PO- Programme outcome, CO- Course outcome

SUBJECT NAME: PRACTICAL IV

SUBJECT CODE: MAM44 CREDITS: 05

NO.OF.HOURS/ WEEK: 05 TOTAL HOURS: 65

Semes	Course	Cours	Course Outcomes						
ter	Name	Credit							
II Regul ation (2017-	PRACTIC AL IV	03	CO1- The Students will able to understand the introduction to applied human anatomy and physiology. CO2- The Students will able to understand the Enzymes in Genetic Engineering and DNA Polymerase CO3- The Students will able to demonstrate Strategy of recombinant DNA technology						
18)			CO4- The Students will able to understand Gene transfer technologies. CO5- Students will able to learn tDNA chips and microarray gene screen technology.						

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	S	S	S	M
CO2	M	S	S	S	S	S	M	S	S	S
CO3	S	S	S	S	S	S	S	M	M	L
CO4	S	S	S	S	S	S	M	M	L	S
CO5	S	S	S	S	S	S	S	S	S	M

PO- Programme outcome, CO- Course outcome

SUBJECT NAME: PROJECT/ DISSERTATION WITH VIVA VOCE SUBJECT CODE: MAM45 CREDITS: 05

NO.OF.HOURS/ WEEK: 05 TOTAL HOURS: 65

Semes ter	Course Name	Cours e Credit	Course Outcomes
II Regul ation (2017- 18)	PROJECT /DISSER TATION WITH VIVA VOCE	03	CO1- The student to learn the knowledge and practice of public health research activity. CO2- Students will be enable them to carry out researches and solve research related problems and to help them in writing thesis and defend their work. CO3- Students will able to demonstrate Strategy of recombinant DNA technology CO4- Students will able to understand Gene transfer technologies. CO5- Students will able to learn tDNA chips and microarray
			gene screen technology.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	S	S	S	M
CO2	M	S	S	S	S	S	M	S	S	S
CO3	S	M	S	S	S	S	S	M	M	L
CO4	S	M	S	S	S	S	M	M	L	S
CO5	S	S	S	S	S	S	S	S	S	M

PO- Programme outcome, CO- Course outcome