Department of Mathematics B.Sc.,Mathematics (2017-2018)

Program Outcomes:

<u>S.No</u>	OUTCOMES
PO1	Logical thinking, critical analysis, and reasoning skills will be highly improved
PO2	Express mathematical ideas clearly and concisely to others
PO3	Ability to apply suitable mathematical techniques to handle problems in physical and related sciences.
PO4	To demonstrate conceptual understanding of basic definitions, and theorems in Mathematics and should be able to describe elaborately with examples.
PO5	Ability to solve mathematical problems by applying the skills such as critical thinking, logical reasoning, and abstraction
PO6	Select appropriate mathematical models and tools to solve the problems including those in real-life contexts.
PO7	Mathematics has its own universal language of symbols and notations. Students are expected to apply the Mathematics language appropriately while expressing mathematical ideas in both oral and written form.
PO8	Problem-solving techniques in mathematics will enhance the knowledge of students to formulate and solve any real-world problems independently.
PO9	Develop the knowledge of abstract mathematical concepts.
P10	Enhance the employability skills in both public and private sector jobs.
Program	n Specific Outcomes:
<u>S.No</u>	OUTCOMES
PSO1	Prepare and Motivate Students for Research Studies in Mathematics and Related Fields.
PSO2	Provide Advanced Knowledge on Topics in Pure Mathematics, Empowering the Students to Pursue Higher Degrees at Reputed Academic Institutions.
PSO3	Having an Ability to use Mathematics in Techniques, Skills, Resources on Real Life
PSO4	Having Problem Solving Ability- to Assess Social Issues (Societal, Health, Safety, Legal and Cultural) as a Mathematician.
PSO5	Having Adaptive Thinking and Adaptability in Relation to Environmental Context and Sustainable Development.
PSO6	Having a Clear Understanding of Professional and Ethical Responsibility.

Subject Name: Algebra

Subject Code: BMA11

No. of Hours per Week: 05

Credit: 03

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
I (Regulation 2017-2018)	Course Name Algebra	Credit 03	 Course Outcomes After studied unit -1, the student will be able to demonstrate the knowledge of the relationship between roots and coefficients of the given equation. After studied unit -2, the student will be able to carry out the calculations of approximate roots of the given polynomial equation. After studied unit -3, the student will be able to find the sum to infinity of the given binomial/exponential/logarithmic series. After studied unit -4, the student will be able to demonstrate the knowledge of matrices and calculate the Eigen values and Eigen vectors of a given square matrix.
			5. After studied unit -5, the student will be able to discuss the basic number theory concepts.

Mapping with Programme Outcomes

	UI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	Μ	Μ	S	Μ	Μ	М
CO2	Μ	Μ	S	Μ	Μ	S	S	S	Μ	S
CO3	S	S	S	Μ	M	M	M	Μ	Μ	М
CO4	S	Μ	S	S	Μ	S	S	Μ	Μ	Μ
CO5	Μ	М	Μ	S	S	S	M	S	Μ	S

PO – Programme Outcome CO – Course outcome

Subject Name: Trigonometry

Subject Code: BMA12

No. of Hours per Week: 04

Credit: 03

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
Ι	Trigonometry	03	1. After studied unit -1, the student will be able to write the expansions of $\cos \theta$ and $\sin \theta$ in powers of $\cos \theta$ and $\sin \theta$.
			2. After studied unit -2, the student will be able to expand the powers of sines and cosines of θ in terms of functions of multiples of θ
(Regulation 2017-2018)			3. After studied unit -3, the student will be able to discuss the concepts of hyperbolic functions.
			4. After studied unit -4, the student will be able to demonstrate knowledge of the logarithm of complex quantities.
			5. After studied unit -5, the student will be able to carry out the calculations of summation of trigonometric series

Mapping with Programme outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	Μ	M	Μ	M	M	М
CO2	Μ	Μ	Μ	S	S	S	Μ	S	S	М
CO3	S	S	S	S	Μ	Μ	S	S	Μ	S
CO4	Μ	S	S	S	S	Μ	Μ	M	Μ	Μ
CO5	S	S	S	Μ	Μ	Μ	Μ	Μ	Μ	Μ

PO – Programme Outcome S – Strong M-Medium

CO – Course outcome

L – Low (may be avoided)

Subject Name: Numerical Methods - I

Subject Code: BAMA13A

No. of Hours per Week: 07

Credit: 04

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
I (Regulation 2017-2018)	Numerical Methods - I	03	 After studied unit -1, the student will be able to solve simultaneous linear equations by Gauss elimination method, Gauss-Jordan Method, and Gauss-Seidel method. After studied unit -2, the student will be able to calculate interpolation values by applying Gregory-Newton"s forward and backward formulae. After studied unit -3, the student will be able to calculate the central interpolation values by applying central differences formulae. After studied unit -4, the student will be able to estimate one or more missing terms of the given set of data. After studied unit -5, the student will be able to estimate the interpolation value for unequal intervals based on Lagrange"s formula of inverse interpolation

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	М	М	М	S	S	S	S
CO2	S	S	S	S	М	S	S	S	М	S
CO3	М	S	S	S	S	S	М	S	М	М
CO4	S	S	М	S	S	М	S	S	S	S
CO5	S	М	S	М	S	S	S	М	М	S

PO – Programme Outcome

CO – Course outcome

S-Strong M-Medium

L – Low (may be avoided)

Subject Name: Calculus

Subject Code: BMA21

Course Outcomes:

Course Name	Course Credit	Course Outcomes
Calculus	03	 After studied unit -1, the student will be able to determine the extreme values of the given function. After studied unit -2, the student will be able to demonstrate knowledge of Cartesian and polar coordinates. After studied unit -3, the student will be able to gain knowledge of curvature, evolutes, and envelope concepts.
		 4. After studied unit -4, the student will be able to evaluate definite integration problems and able to apply reduction formulae. 5. After studied unit -5, the student will be able to evaluate double and triple integrals.
	Course Name Calculus	Course Name Course Credit Calculus 03

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	Μ	Μ	S	Μ	S
CO2	M	S	S	S	S	S	Μ	M	S	Μ
CO3	M	M	M	S	S	S	S	S	M	M
CO4	M	S	S	S	S	S	S	S	Μ	S
CO5	S	M	M	S	Μ	Μ	Μ	S	S	S

PO-Programme Outcome, CO-Course outcome

S-Strong, M-Medium, L-Low (may be avoided)

No. of Hours per Week: 05

Credit: 03

Subject Name: Analytical Geometry of three dimensions Subject Code: BMA22 No. of Hours per Week: 04 Credit: 03

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
			 After studied unit -1, the student will be able to demonstrate knowledge of the plane and its applications. After studied unit -2, the student will be able
II (Regulation	Analytical Geometry	03	to gain knowledge of straight lines and their applications.3. After studied unit -3, the student will be able to carry out sphere related problems.
2017-2018)			4. After studied unit -4, the student will be able to know the concepts of the cone, right circular cone, and enveloping cone.
			5. After studied unit -5, the student will be able to carry out the calculations of the problems related to the cylinder

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	Μ	Μ	M	S	S	S	S	M
CO2	Μ	M	Μ	S	S	S	S	S	M	M
CO3	Μ	M	Μ	S	S	S	S	S	S	S
CO4	S	S	S	S	M	Μ	M	M	S	S
CO5	S	M	Μ	Μ	M	Μ	M	M	M	S

 $PO-Programme\ Outcome,\quad CO-Course\ outcome$

Subject Name: Numerical Methods - II

No. of Hours per Week: 04

Subject Code: BAMA23A

Credit: 04

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
II (Regulation 2017-2018)	Numerical Methods - II	03	 After studied unit -1, the student will be able to evaluate derivatives by applying Newton''s forward and backward differences formulae. After studied unit -2, the student will be able to evaluate integrations by applying the trapezoidal rule, Simpson''s rules, and Weddle''s rule. After studied unit -3, the student will be able to find a complete solution to linear difference equations After studied unit -4, the student will be able to estimate approximate numerical solutions of algebraic and transcendental equations. After studied unit -5, the student will be able to estimate approximate numerical solutions of ordinary differential equations by Euler, Picard, Taylor, and RungeKutta methods

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	М	S	М	S	S
CO2	М	S	S	S	M	М	S	S	М	S
CO3	М	S	S	S	S	S	М	S	S	М
CO4	S	S	M	S	S	S	S	S	S	S
CO5	М	М	S	М	S	S	S	М	М	S

PO – Programme Outcome, CO – Course outcome

Subject Name: Differential Equations Subject Code: BMA31 No. of Hours per Week: 06

Credit: 04

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
III (Regulation 2017-2018)	Differential Equations	04	 After studied unit -1, the student will be able to know the various methods of solving the first-order higher degree differential equations. After studied unit -2, the student will be able to carry out the different methods of solving the second order differential equations. After studied unit -3, the student will be able to understand the concepts of total differential equations and solve the problems. After studied unit -4, the student will be able to demonstrate knowledge of Laplace transform and its applications. After studied unit -5, the student will be able to solve partial differential equations.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	M	Μ	M	M	S	S	S	S
CO2	S	S	S	S	S	M	M	M	S	M
CO3	Μ	Μ	M	Μ	S	S	S	S	S	S
CO4	S	S	S	S	M	M	M	M	M	S
CO5	S	S	S	S	M	M	M	M	M	Μ

PO – Programme Outcome, CO – Course outcome

S – Strong, M – Medium, L – Low (may be avoided)

Subject Name: Mathematical Statistics - I Subject Code: BMA13B No. of Hours per Week: 07

Credit: 04

Course Outcomes:

Semester (Course Name	Credit	Course Outcomes
III (Regulation 2017-2018)	Mathematical Statistics - I	04	 After studied unit -1, the student will be able to express the techniques of conditional probability and Baye"s theorem with examples After studied unit -2, the student will be able to calculate expectation, and distribution function. After studied unit -3, the student will be able to express Chebychev"s inequality and its applications. After studied unit -4, the student will be able to interpret the different types of correlation coefficient and lines of regression with examples. After studied unit -5, the student will be able to apply domain knowledge for discrete and continuous distributions with examples.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	М	S	S	S	S
CO2	S	S	S	S	М	S	S	S	М	S
CO3	М	S	S	S	S	S	М	S	S	М
CO4	S	S	М	S	S	М	S	S	S	S
CO5	S	M	S	Μ	S	S	S	S	S	S

PO-Programme Outcome, CO-Course outcome

 $S-Strong,\,M-Medium,\,L-Low\ (may\ be\ avoided)$

Subject Name: Linear Programming

Subject Code: BSMA33

No. of Hours per Week: 03

Credit: 03

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
III (Regulation 2017-2018)	Linear Programming	03	 After studied unit-1, the student will be able to formulate a real-world problem into an LPP and carry out the calculations of the simplex method. After studied unit-2, the student will be able to solve transportation problems. After studied unit-3, the student will be able to understand analogies between transportation problems and assignment models. After studied unit-4, the student will be able to demonstrate knowledge of game theory and its applications. After studied unit-5, the student will be able to know the concept of simulation and solve the problems by applying the Monte Carlo simulation technique.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	Μ	S	S	S	Μ
CO2	Μ	S	S	Μ	S	S	S	S	S	S
CO3	S	S	Μ	S	Μ	S	Μ	S	S	S
CO4	S	Μ	S	S	S	S	S	Μ	Μ	S
CO5	S	S	S	S	S	S	S	S	S	Μ

PO – Programme Outcome, CO – Course outcome

Subject Name: Basic Mathematics Subject Code: BNMA33

No. of Hours per Week: 02 Credit: 02

Course Outcomes:

III1. After s to define sets and vIII2. After to descrition one numbIII3. After s to express truth table(Regulation 2017-2018)Basic Mathematics024. After s to find th matrices applying5. After to get a s able to so	studied unit -1, the student will be able e subset, proper subset, and equivalent write sets using set notations. studied unit -2, the student will be able be various number systems and convert ber system into another. studied unit -3, the student will be able ss logical statements and prepares the les. studied unit -4, the student will be able ne determinant values 2x2, and 3x3 and solve a system of equations by g Cramer''s rule. studied unit -5, the student will be able strong background in matrices and be olve a system of non-homogeneous

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	S	S	M	М	М
CO2	S	S	S	S	M	M	S	S	S	S
CO3	S	М	S	М	S	S	M	S	М	S
CO4	S	S	М	S	S	S	S	M	S	S
CO5	S	М	S	S	M	S	S	S	S	М

PO-Programme Outcome, CO-Course outcome

 $S-Strong,\,M-Medium,\,L-Low\ (may\ be\ avoided)$

Subject Name: Vector Analysis and Fourier Analysis

No. of Hours per Week: 06

Subject Code: BMA41

Credit: 04

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
			1. After studied unit -1, the student will be able to demonstrate knowledge of the physical and geometrical meaning of the derivative and its applications.
IV			2. After studied unit -2, the student will be able to know the concepts of divergence, curl of a vector, and their physical interpretations.
(Regulation 2017-2018)	Vector Analysis and Fourier Analysis	04	3. After studied unit -3, the student will be able to evaluate the line, surface, and volume integrals. 4. After studied unit -4, the student will be able to
			know the applications of Stoke"s, Gauss divergence, and Green"s theorems.
			5. After studied unit -5, the student will be able to express the given function as a Fourier series.

Mapping with Programme Outcomes

COs	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010
CO1	S	S	S	М	М	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	М
CO3	М	М	М	М	S	S	S	М	S	S
CO4	М	М	М	М	М	S	S	S	S	М
CO5	М	S	S	S	S	М	М	S	S	S

 $PO-Programme\ Outcome,\quad CO-Course\ outcome$

Subject Name: Mathematical Statistics - II

Subject Code: BAMA23B

No. of Hours per Week: 04

Credit: 04

Course Outcomes:

	Semester	Course Name	Course Credit	Course Outcomes
				1. After studied unit -1, the student will be able to demonstrate sampling, parameter, and significance with examples.
	IV			2. After studied unit -2, the student will be able to know about Chi-square distribution and its applications.
	(Regulation 2017-2018)	Mathematical Statistics - II	04	3. After studied unit -3, the student will be able to illustrate Students t-distribution and the applications of F-distribution.
				4. After studied unit -4, the student will be able to state null and alternate hypotheses to the given problem and test the hypothesis.
				5. After studied unit -5, the student will be able to apply ANOVA techniques

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	S	М	S	S	S	М
CO2	S	S	S	S	М	S	S	М	М	S
CO3	М	S	S	S	S	S	М	S	S	М
CO4	S	S	М	S	S	М	S	S	S	S
CO5	S	М	S	М	S	М	S	S	М	М

 $PO-Programme\ Outcome, \quad CO-Course\ outcome$

 $S-Strong,\,M-Medium,\,L-Low\ (may\ be\ avoided)$

Subject Name: Mathematics For Competitive Examinations-INo. of Hours per Week: 03Subject Code: BSMA43Credit: 03

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
IV (Regulation 2017-2018)	Mathematics For Competitive Examinations-I	03	 After studied unit-1, the student will be able to answer the questions related to the number system. After studied unit-2, the student will be able to answer real-life simple problems by applying the HCF and/or LCM. After studied unit-3, the student will be able to apply the correct sequence of operations to find out the value of a given mathematical expression. After studied unit-4, the student will be able to solve the problems involving square roots, cube roots, and average. After studied unit-5, the student will be able to carry out the problems related to ages, and simplify products and quotients involving surds

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	М	S	М	S	S	М
CO2	М	S	S	S	S	S	S	М	М	S
CO3	М	S	S	S	S	S	М	S	S	S
CO4	S	S	S	М	S	S	М	М	М	S
CO5	S	М	S	М	М	М	М	S	S	S

 $PO-Programme\ Outcome, \quad CO-Course\ outcome$

S – Strong, M – Medium, L – Low (may be avoided)

Subject Name: Foundation Mathematics for

Competitive Examinations

Subject Code: BNMA44

No. of Hours per Week: 02

Credit: 02

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
IV (Regulation 2017-2018)	Foundation Mathematics for Competitive Examinations	02	 After studied unit-1, the student will be able to solve real-life problems related to percentages. After studied unit-2, the student will be able to carry out real-world problems related to profit and loss. After studied unit-3, the student will be able to demonstrate knowledge of real-life problems based on the ratio and proportions. After studied unit-4, the student will be able to demonstrate knowledge of the work rate formula and apply this technique to solve several real-life problems. After studied unit-5, the students will be able to solve real-life problems based on simple and
			compound interest.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	М	S	S	М	S	S	S
CO2	М	S	S	S	М	S	S	М	М	S
CO3	S	М	S	S	S	S	М	S	S	М
CO4	S	S	S	М	S	S	М	М	М	S
CO5	S	М	S	М	М	М	S	S	М	М

 $PO-Programme\ Outcome,\quad CO-Course\ outcome$

Subject Name: Abstract Algebra Subject Code: BMA51

No. of Hours per Week: 05 Credit: 04

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
			1. After studied unit-1, the student will be able to determine whether a given set is a group under a binary operation and find its subgroup.
V		04	2. After studied unit-2, the student will be able to demonstrate knowledge of normal subgroup, homomorphism, and isomorphism.
(Regulation	Abstract Algebra		3. After studied unit-3, the student will be able to carry out the problems based on permutation.
2017-2018)			4. After studied unit-4, the student will be able to demonstrate knowledge of rings, ideals, and integral domain.
			5. After studied unit-5, the student will be able to understand the concepts of ideals and Euclidean rings

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	М	S	S	М
CO2	S	S	S	S	S	М	S	S	S	S
CO3	S	S	S	S	М	S	S	М	S	S
CO4	S	S	S	М	S	S	S	S	S	S
CO5	S	S	М	S	М	М	S	S	S	S

PO – Programme Outcome, CO – Course outcome

S – Strong, M – Medium, L – Low (may be avoided)

Subject Name: Real Analysis - I

Subject Code: BMA52

No. of Hours per Week: 05

Credit: 04

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
			 After studied unit -1, the student will be able to identify countable sets, the limit of a sequence, and its convergence. After studied unit -2, the student will be able to demonstrate knowledge of divergent
V (Regulation	Real Analysis - I	04	sequence, bounded sequence, monotone sequence, and Cauchy sequence.3. After studied unit -3, the student will be able to corruge out convergence and divergence of
2017-2018)			4. After studied unit -4, the student will be able
			5. After studied unit -5, the student will be able to demonstrate knowledge of open sets and
			closed sets with suitable examples.

Mapping with Programme Outcomes

COs	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010
CO1	М	М	S	S	S	S	М	М	М	S
CO2	S	S	М	М	М	М	М	М	М	S
CO3	S	S	S	М	М	S	S	М	S	S
CO4	М	М	М	S	S	S	М	М	М	М
CO5	М	S	S	М	М	М	М	S	S	М

PO-Programme Outcome, CO-Course outcomeS-Strong, M-Medium, L-Low (may be avoided)

Subject Name: Complex Analysis - I

Subject Code: BMA53

No. of Hours per Week: 05

Credit: 04

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
V (Regulation 2017-2018)	Complex Analysis - I	04	 After studied unit-1, the student will be able to gain knowledge about complex functions and their nature, continuous functions, necessary and sufficient conditions of an analytic function After studied unit-2, the student will be able to demonstrate knowledge of elementary transformations, conformal and bilinear transformations with examples. After studied unit-3, the student will be able to evaluate contour integrals using Cauchy"s integral formula. To Find Cauchy-Riemann equations in polar form-properties of Analytic functions To Solve Necessary and sufficient conditions for Analytic functions-problems

Mapping with Programme Outcomes

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
CO1	S	S	М	S	S	М	S	М	S	М
CO2	М	S	М	М	S	М	S	М	М	S
CO3	S	М	S	S	М	S	S	М	S	М
CO4	М	М	М	S	S	S	М	М	S	S
CO5	М	S	S	М	М	М	М	S	S	М

PO – Programme Outcome, CO – Course outcome

Subject Name: Statics

No. of Hours per Week: 05

Credit: 04

Subject Code: BMA54

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
			1. After studied unit -1, the student will be able to know about the forces and equilibrium of a particle.
V			2. After studied unit -2, the student will be able to identify the parallel forces and couples and solve related problems.
(Regulation 2017-2018)	Statics	04	3. After studied unit -3, the student will be able to demonstrate knowledge of friction and its applications.
			4. After studied unit -4, the student will be able to find the centre of mass of different laminas.
			5. After studied unit -5, the student will be able to demonstrate knowledge of sag and suspension bridge and solve related problems

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Μ	M	M	S	S	S	S	M	M	Μ
CO2	М	M	M	M	S	S	M	M	S	S
CO3	S	M	S	S	M	M	M	M	M	М
CO4	S	S	M	M	M	M	M	M	M	М
CO5	М	M	S	S	S	M	M	M	M	М

PO - Programme Outcome, CO - Course outcomeS - Strong, M - Medium, L - Low (may be avoided)

Subject Name: Dynamics

No. of Hours per Week: 04

Credit: 04

Subject Code: BMA55

Course Outcomes:

	Semester	Course Name	Course Credit	Course Outcomes
	V (Regulation 1 2017-2018)			1. After studied unit -1, the student will be able to demonstrate knowledge of velocity, acceleration, and coplanar motion.
				2. After studied unit -2, the student will be able to gain knowledge of projectile and its applications.
		Dynamics	04	3. After studied unit -3, the student will be able to know about simple harmonic motion and simple pendulum.
				4. After studied unit -4, the student will be able to carry out problems related to impact and laws of impact.
				5. After studied unit -5, the student will be able to demonstrate knowledge of the central orbits.

Mapping with Programme Outcomes

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
CO1	S	S	М	S	S	М	S	М	S	М
CO2	М	S	М	М	S	М	S	М	М	S
CO3	S	М	S	S	М	S	S	М	S	М
CO4	М	М	М	S	S	S	М	М	S	S
CO5	М	S	S	М	М	М	М	S	S	М

 $PO-Programme\ Outcome,\quad CO-Course\ outcome$

Subject Name: Dynamics Subject Code: BEMA56A

No. of Hours per Week: 03

Credit: 03

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
			1. After studied unit -1, the student will be able to know various graph structures and isomorphism between graphs.
V			2. After studied unit -2, the student will be able to know the representation of the graphs in matrix form.
(Regulation 2017-2018)	Graph Theory	03	3. After studied unit -3, the student will be able to know the concepts of connected graph, component, cut point, and bridge of a graph.
			4. After studied unit -4, the student will be able to know about trees and their applications.
			5. After studied unit -5, the student will be able to demonstrate knowledge of Eulerian and Hamiltonian graphs.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	М	М	М	М	S	S	S	S
CO2	М	М	M	S	М	М	S	S	М	S
CO3	М	М	М	S	М	S	S	S	S	S
CO4	S	S	М	М	S	М	M	S	М	S
CO5	S	S	S	М	S	S	М	М	S	М

PO - Programme Outcome, CO - Course outcomeS - Strong, M - Medium, L - Low (may be avoided)

Subject Name: Mathematics for Competitive Examinations – IINo. of Hours per Week: 03Subject Code: BSMA57Credit: 03

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
			 After studied unit-1, the students will be able to solve real-life problems related to percentages. After studied unit-2, the student will be able
			to carry out the problems related to profit and loss
V (Regulation 2017-2018)	Mathematics for Competitive Examinations – II	03	3. After studied unit-3, the student will be able to carry out problems related to ratio and proportion
			4. After studied unit-4, the student will be able to demonstrate knowledge of logarithms, partnership, and chain rule and solve the related problems.
			5. After studied unit-1, the students will be able to solve real-life problems related to time and work.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	M	S	S	М	S	S	S	М
CO2	М	S	S	M	S	M	S	М	М	S
CO3	S	М	M	S	М	S	M	S	S	М
CO4	М	S	М	М	S	М	S	S	М	S
CO5	S	S	S	М	S	S	М	М	S	М

 $PO-Programme\ Outcome,\quad CO-Course\ outcome$

Subject Name: Linear Algebra Subject Code: BMA61

No. of Hours per Week: 05 Credit: 04

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
			1. After studied unit -1, the student will be able to identify linear dependent and independent vectors.
VI			2. After studied unit -2, the student will be able to classify orthogonal and orthonormal vectors.
(Regulation 2017-2018)	Linear Algebra	04	3. After studied unit -3, the student will be able to know about the algebra of linear transformations.
			4. After studied unit -4, the student will be able to know about the matrix of a linear transformation and its properties.
			5. After studied unit -5, the student will be able to solve a system of linear equations

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	М	S	S	S	М
CO2	S	S	S	S	М	S	S	M	М	S
CO3	М	S	S	S	М	S	М	S	S	М
CO4	S	S	М	S	S	М	S	М	М	S
CO5	S	M	S	М	S	M	M	S	S	S

PO – Programme Outcome, CO – Course outcome

Subject Name: Real Analysis- II Subject Code: BMA62

No. of Hours per Week: 05 Credit: 04

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
VI (Regulation 2017-2018)	Real Analysis II	04	 After studied unit-1, the student will be able to demonstrate knowledge of connected sets and complete metric spaces with suitable examples. After studied unit-2, the student will be able to identify the functions which are continuous and uniformly continuous. After studied unit-3, the student will be able to express about Riemann integration and its properties. After studied unit-4, the student will be able to carry out the problems related to Rolle^{**}s theorem and the law of mean. After studied unit-5, the student will be able to demonstrate knowledge of pointwise convergence, uniform convergence of sequences of functions, and of series of functions.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	Μ	S
CO2	Μ	S	S	S	Μ	Μ	S	S	S	Μ
CO3	S	S	Μ	S	S	S	S	S	S	S
CO4	Μ	S	S	S	S	S	Μ	S	S	S
CO5	S	Μ	S	S	S	S	S	Μ	S	Μ

PO – Programme Outcome, CO – Course outcome

Subject Name: Complex Analysis II Subject Code: BMA63

No. of Hours per Week: 05

Credit: 04

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
VI (Regulation 2017-2018)	Complex Analysis II	<u>O</u> 4	 After studied unit-1, the student will be able to gain knowledge about complex functions and their nature, continuous functions, necessary and sufficient conditions of an analytic function After studied unit-2, the student will be able to demonstrate knowledge of elementary transformations, conformal and bilinear transformations with examples. After studied unit-3, the student will be able to evaluate contour integrals using Cauchy"s integral formula. After studied unit-4, the student will be able to express a function as Taylor series or Laurent"s series at the given domain, and also determine the circle or annulus of convergence power series expansions of analytic functions. After studied unit-5, the student will be able to carry out the problems related to the
			evaluation of improper integrals.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	Μ	S	S	Μ	S	Μ	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	Μ	S	S	S	Μ	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	Μ

PO-Programme Outcome, CO-Course outcome

Subject Name: Programming in C Language Subject Code: BMA64

No. of Hours per Week: 03

Credit: 03

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
			1. After studied unit -1, the student will be able to demonstrate "c" tokens, keywords, the basic structure of C programs and the execution of a "C" Program.
VI	Programming in C	03	2. After studied unit -2, the student will be able to express the nature of constants, variables, data types, declaration of variables, and assigning values to variables.
2017-2018)	Language	05	3. After studied unit -3, the student will be able to describe valuation of expressions and usage of various operators.
			4. After studied unit -4, the student will be able to express the logic using control statements.
			5. After studied unit -5, the student will be able to demonstrate knowledge pertaining to arrays.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Μ	S	Μ	Μ	Μ	S	Μ	S	Μ	Μ
CO2	Μ	S	Μ	Μ	S	S	Μ	S	Μ	Μ
CO3	Μ	S	Μ	Μ	Μ	S	S	Μ	Μ	S
CO4	S	Μ	S	S	S	Μ	М	S	S	Μ
CO5	S	S	Μ	S	Μ	S	Μ	S	S	Μ

PO-Programme Outcome, CO-Course outcome

Subject Name: Operations Research

Subject Code: BEMA65A

No. of Hours per Week: 03

Credit: 03

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
VI			 After studied unit -1, the student will be able to determine the critical activities of a repeated project and its completion time. After studied unit -2, the student will be able to determine the duration of activities of a new project based on three-time estimates. After studied unit -3, the student will be able
(Regulation	Operations Research	03	to carry out the EOQ level of various inventory control models.
2017-2018)			4. After studied unit -4, the student will be able to calculate processing times of sequencing of jobs through 2, 3, and m machines.
			5. After studied unit -5, the student will be able to find out the length of the queue, and waiting time in the queue under single and multi- channel queuing models.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	Μ	S
CO2	Μ	S	S	S	Μ	Μ	S	S	S	Μ
CO3	S	S	Μ	S	S	S	S	S	S	S
CO4	Μ	S	S	S	S	S	Μ	S	S	S
CO5	S	Μ	S	S	S	S	S	Μ	S	Μ

PO – Programme Outcome, CO – Course outcome

Subject Name: Special functions Subject Code: BEMA66A

No. of Hours per Week: 03 Credit: 03

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
VI (Regulation 2017-2018)	Course Name Special functions	03	Course Outcomes1. After studied unit -1, the student will be able to acquire the concept of linear operators, and solve simultaneous linear differential equations.2. After studied unit -2, the student will be able to interpret Adams and Modified Adams method and extrapolation techniques.3. After studied unit -3, the student will be able to understand the concept of power series solution.4. After studied unit -4, the student will be able to explain the concepts of Bessel functions, Legendre functions, and their properties.
			5. After studied unit -5, the student will be able to analyze term-by-term differentiation of the Fourier series and Legendre series.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	Μ	S
CO2	Μ	S	S	S	Μ	Μ	S	S	S	Μ
CO3	S	S	Μ	S	S	S	S	S	S	S
CO4	Μ	S	S	S	S	S	Μ	S	S	S
CO5	S	Μ	S	S	S	S	S	Μ	S	Μ

 $PO-Programme\ Outcome, \quad CO-Course\ outcome$

Subject Name:Mathematics For Competitive Examinations-IIINo. of Hours per Week: 03Subject Code:BSMA67Credit: 03

Course Outcomes:

Semester	Course Name	Course Credit	Course Outcomes
		Creut	 After studied unit -1, the student will be able to solve the problems related to time and distance. After studied unit -2, the student will be able to carry out the boat and stream, train, and
VI (Regulation 2017-2018)	Mathematics For Competitive Examinations-III	03	 speed- based questions. 3. After studied unit -3, the student will answer the questions based on alligation or mixture. Aspirants preparing for the upcoming competitive examinations will be able to answer such questions in a faster way.
			4. After studied unit -4, the student will be able to carry out problems related to compound interest.
			5. After studied unit -5, the student will be able to demonstrate knowledge of area-related problems.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	М	S	M	S	S	М
CO2	М	S	S	S	S	S	S	М	М	S
CO3	М	S	S	S	S	S	М	S	S	S
CO4	S	S	S	М	S	S	M	М	М	S
CO5	S	M	S	М	М	M	M	S	S	S

PO – Programme Outcome, CO – Course outcome