Department of Biochemistry M.Sc Biochemistry(20-21 Regulation)

Program Outcomes:

S.No	<u>OUTCOMES</u>
PO1	The students achieved for best computational performance in a specific context
PO2	They cultivate the highest level of learning and technological key
PO3	We were choose social welfare oriented skill based subject and its applications in biology, helps to the students & social welfare
PO4	These competences of a course possess upon achieved for course specific goals
PO5	Able to design and contact scientific experiments and analyzing the data

Program specific Outcomes:

S.No	<u>OUTCOMES</u>
PSO1	Acquire knowledge and skills to undertake a career in research in an academic setup.
PSO2	Apply the knowledge of experimental approaches to save problems of a chemical nature & ability to entered that knowledge to the solution
PSO3	Drug development and synthesize the knowledge & apply the same for multitude of laboratory applications
PSO4	Understand and apply the concepts of life sources, empower the technical knowledge know &practical hands-on braining in the field
PSO5	Drug development and synthesize the knowledge & apply the same for multitude of laboratory applications

Course Outcomes:

Sub Name: Advances in cell Biology

Sub Code:DBC1

Semes ter	Course Name	Course Credit	Course Outcomes
	Semester I Core Paper 1 Advances in cell biology		Course Outcomes CO 1- The student will be able to Get Knowledge on Structure and function of prokaryotic and eukaryotic cells. CO 2 -Understands the structure and functions of cells and transport across membrane. CO 3 -Aware of structure of model membrane Well versed on Extracellular matrix, cell-cell communication. CO 4 -Familiar with Sorting and regulation of intracellular trans.
2021)			CO 5 -The student will be able to understand of cell signaling process. CO 6 -knowledge on signaling molecules get familiar with cell surface receptors and its function comprehend the pathways of intra cellular signal transduction aware of secondary messengers

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO ₂	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S
CO ₆	S	S	M	S	S

Sub Name: Chemistry of Biomolecules

Sub Code:DBC12

		CO 1-The student will be able understand about the properties of water and buffers
Core Paper 2 Chemistry of Biomolecules	04	CO 2- knowledge on polysaccharides and its types get familiar with structural elucidation of polysaccharides CO 3- Well versed with proteoglycans, glycoproteins and glycolipids aware of oligosaccharides and its interaction in biochemical process. CO 4- Get an idea about structure and functions of vitamins Well known with sources and Daily requirements of various vitamins. CO 5-Knowledge of structure and functions of porphyrins Aware of Deficiency of vitamins and porphyrins. CO 6-Well versed with Biochemical important porphyrins hemoglobin and chlorophyll.

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S
CO6	S	S	S	S	M

Sub Name:Human Physiology

Sub Code:DBC13

Core Paper 3 Human Physiology	03	CO1 -The student will be able to obtain a deep knowledge regarding blood and its components. CO 2 -Get to know about the haemopoiesis. Get a well versed knowledge on coagulation of blood. CO 3 -Aware of various types of blood groups and its significance Attain information on Blood corpuscles CO 4- Interpret ECG – its principle and significance Infer blood pressure and its complications . CO 5- Understand various sense organs Get familiar with Neurons and gross neuroanatomy of the brain and spinal cord. Get knowledge on Muscle physiology .
----------------------------------	----	--

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

Sub Name:Plant Biochemistry

Sub Code:DEBC14B

Core Elective Paper Plant Biochemistry	03	CO 1- The student will be able to know photosynthesis process. CO 2- Understand the role of photosynthetic pigments aware of The photo systems I and II; cyclic and noncyclic photophosphorylation. CO 3- Enumerate the Pathways of glucose oxidation in plants CO 4 - Know the role of photorespiration in plants. Get familiar with regulation of nif and nod genes of nitrogen fixation Understand the Enzymology of nitrogen fixation. CO -5 Familiar with Nutrient functions in growth and development. Process. Get knowledge on Plant defenses, environmental and genetic control Aware of senescence, aging of plants .
---	----	--

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

Sub Name:Bioinstrumentation

Sub Code:

	Open elective Bioinstrumentation	03	CO1- It helps students in understanding the basic science in a variety of applications. CO2- To introduce an fundamentals of transducers as applicable to physiology. CO3- To explore the human body parameter measurements setups. CO4- To make the students understand the basic concepts of forensic techniques. CO5-To Give basic ideas about how Biomolecules are detected by instrumentation.
--	-------------------------------------	----	---

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

Sub Name: Analytical Biochemistry

Sub Code:DBC21

SEME STER II	Core Paper-4 Analytical Biochemistry	04	CO 1 -Gain Practical knowledge, hands on tools and techniques for the characterization of Biomolecules will help the students in advanced research programs CO 2 -Choose and plan the use of suitable electrophoretic techniques for actual analytical problems. CO 3 -Describe the use of nucleic acids as tools in molecular research decides and apply appropriate tools and techniques in molecular biology. CO 4 -Has practical experience in the use of computer software for the construction of genetic maps. CO 5 -gain insight of molecular biology techniques that are instrumental in analysis of genes at DNA level CO 6- knowledge on analytical instruments by visiting laboratories.
--------------------	---	----	---

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S
CO6	S	S	S	S	M

Sub Name: Molecular biology

Sub Code:DBC22

Core Paper – 5 Molecular Biology	04	CO 1- Know about genome organization or living organisms, study of genes genome, chromosome etc. CO 2- Learn structural levels of nucleic acids-DNA and RNA and genome organization in prokaryotes. CO 3- The student can predict how a change in a specific DNA or RNA sequence can result in changes in gene expression. CO 4- Understand the processes of transcription and translation, including how they are both similar and different in prokaryotic and eukaryotic organisms. CO 5- Understanding the principles and applications of Polymerase Chain Reaction. Make students learn mutation and mutagenesis CO 6- Acquire knowledge related to discovery of DNA as genetic material, DNA replication, transcription, DNA repair and translation
-------------------------------------	----	--

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S
CO6	S	S	S	S	M

Sub Name: Metabolic Regulation and Disorders

Sub Code:DBC23

Core Paper-6 Metabolic Regulation and Disorders	04	CO 1- Get a mechanistic overview of enzyme activity and regulation in cells CO 2 -Understand the metabolic pathways, the energy yielding & energy requiring reactions in biological system. CO 3 -Describe the Cholesterol is kept in balance by homeostatic mechanisms: CO 4 -Understand the metabolic defects in different enzymes of urea biosynthesis, although distinct at the molecular level, present similar clinical signs and symptoms CO 5 -Understand the nucleotide metabolism assess the crucial role of some hormones with regard to the integration of metabolic pathways CO 6- Gain the Knowledge Higher dietary intake leads to reduced synthesis in the body.
---	----	---

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S
CO6	S	S	S	S	S

Sub Name: Bioinformatics Sub Code:DEBC24B

		CO-1 Well known on computer system design.
		CO 2 -Well versed with internet.
		CO 3 -Aware on World wide Web, Url, HTML
Elective Paper - 2 Bioinformatics	03	CO 4-Well versed with Phylogenetic trees. vare on DNA microarrays
		CO 5- Aware on drug designing and Knowledgeable on simulation of ES Complex interaction. Familiar with computer modeling of proteins.

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

Sub Name:Herbal Medicine

Sub Code:

		CO1-Gain knowledge on importance of Medicinal plants.
		CO2-can understand importants of medicinal plants human health care.
Open elective Herbal medicine	03	CO3-Acquire knowledge on role of proteins lipids carbohydrates and vitamins in balanced diet.
		CO4- To understand the methods of Disease diagnosis and treatment.
		CO5- Traditional knowledge and utility of some medicinal Plants in Tamilnadu

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

Sub Name:Advanced Endocrinology

Sub Code:DBC31

			CO 1 -Knowledgeable on cyclic hormone cascade system.
		CO 2- Aware of Hormone regulations and Insulin.	
		CO 3 -Well versed on pituitary hormones and its roles.	
			CO 4- Familiar with thyroid hormones.
SEME STER	1	05	CO 5- Well versed with signal transduction.
III	Advanced Endocrinology		Knowledgeable on G protein.
			CO 6- Aware of protein kinase enzyme regulations.
			Well versed on light and dark cycle.
			CO 7 -Aware of multiple endocrine neoplasias.
			Well versed on hormone response.

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S
CO6	S	S	S	S	M
CO7	S	S	S	S	S

Sub Name:Core Practical Sub Code:

		CO 1- Students understand the preparation of buffers and ph measurements.
		CO 2 -Students understand and practical knowledge of techniques of PCR
Core Practical – I	03	CO 3 - Students understand and practical knowledge of techniques of column chromatography
		CO 4- Gain the Knowledge of Determination of tryptophan.
		CO 5- Gain the Knowledge of Estimation of Iron.

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

SUBJECT NAME: CORE PRACTICAL II SUB CODE:

		CO 1-students understand the blood grouping and Rh typing
		CO2- Students make understanding the techniques ELISA.
Core Practical – II	03	CO3 -Students get practical knowledge on basic microbiological techniques like pure culture techniques and staining techniques.
		CO4 -Acquire knowledge related to turbidity method
		CO5 -Gain the Knowledge of membrane filtration technique.

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

SUBJECT NAME: RESEARCH METHODOLOGY SUB CODE:

		CO 1- Identify a research problem by searching relevant literature. Write an effective research articles
		CO 2 -familiar with search engines. Aware on standard deviation
		CO3- Well known on ANOVA Aware of BLAST and FASTA
Core Paper – 8 Research Methodology	05	CO4 -identify the protein structure using bioinformatics tools.
		CO5-Aware of ethics in food and drug safety.
		Well known on patenting and fundamental research.
		CO 6-Well known on importance of NET examination
		CO7 -To develop sound Knowledge on Preparation of research reports .

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
C05	S	M	S	S	M
CO6	S	S	M	S	S
CO7	S	S	S	S	S

SUBJECT NAME: BIOTECHNOLOGY

SUB CODE:

			CO -1 familiar with gene transfer system.
			CO2 -Knowledgeable on plasmids and cosmids .Aware of PCR and blotting techniques.
			CO 3 Well versed on xenografting.
			Aware of GM foods.
	Paper - 9		CO4 -Well versed on industrial uses of enzymes.
	Biotechnology		CO 5- Aware of IPR.
			CO 6- Well versed on patenting.
			CO7 -Well versed with restriction enzymes

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO ₂	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	M
CO5	S	S	S	S	S
CO6	S	S	S	S	S
CO7	S	S	S	S	S

Sub Name: Immunology

Sub Code:

			O1- A wide knowledge on the immunity, cells and organs of immune system.
			O 2 -Illustrate the structure and classification of antibodies
Elective	e - 3		CO -3 Enlightenment of antigen and antibody interaction during infection.
Immuno	logy	03	CO -4 Acquire knowledge on the principles, methodology
			CO -5Gain the Knowledge of immunological techniques.
			CO 6 -Exposure to mechanisms involved during allergic reactions.

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	M
CO5	S	S	S	S	S
CO6	S	S	S	S	S

SUBJECT NAME: MOLECULAR BIOLOGY SUB CODE:

I I V	Core Paper 10 Tolecular Biology	05	CO 1 -Know about genome organization or living organisms. CO 2 -study of genes genome, chromosome etc. CO 3 -Learn structural levels of nucleic acids- DNA and RNA and genome organization in prokaryotes. CO 4 -Learn structural levels of transcription, posttranscriptional processing in prokaryotes. CO 5 -The student can predict how a change in a specific DNA or RNA sequence can result in changes in gene expression. CO 6- Understanding the principles and applications of Molecular Biology techniques CO7 -Applications of Polymerase chain reaction.
-------	---------------------------------	----	--

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO ₂	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	M
CO5	S	S	S	S	S
CO6	S	S	S	S	S
CO7	S	S	S	S	S

SUBJECT NAME: ADVANCED CLINICAL BIOLOGY SUB CODE:

		CO 1- Understand the blood glucose regulation
		CO2-Describe the pathophysiology and molecular basis of Diabetes mellitus.
		CO3 -Analyze the genetic diseases like phenyl ketonuria, cystinuria, and albinism
Core Paper – 11 dvanced Clinical Biochemistry	05	CO4 -Assess the diagnostic performance of renal function tests
		CO5 -Examine the gastric contents.
		CO 6 -Practical knowledge on FTM analysis.
		CO7- Acquire the Knowledge of hypo and hyperuricemias, obesity and fatty liver.

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S
CO6	S	M	S	S	S
CO7	S	S	S	S	S

Sub Name: Genetic engineering

Sub Code:

Core Elective Paper -3 Genetic Engineering	03	CO 1 -Familiar with gene cloning. CO 2 -Well versed with tools and techniques. CO 3 -Knowledgeable on isolation and purification of enzymes. Aware of isolation of plant cell DNA. CO 4- Knowledgeable on Ti plasmids. Well versed on papilloma viruses Knowledgeable on nick translation. CO 5 -Well versed on DNA ligation. Aware of DNA foot printing.
		Well versed on DNA analysis

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	S
CO5	S	S	S	S	S

SUBJECT NAME: PRACTICAL III

SUB CODE:

Practical – III zymology and Clinical Diagnostics (Biochemical Analysis of Blood)		CO 1 students able to Understand the hands on training of purification and kinetics analysis of enzymes CO 2 And also make practical training of biochemical techniques and biochemical analysis CO3 Purification of acid Phosphatase from Potato. CO4 Effect of substrate Concentration and acid phosphates Activity by EDTA. CO 5 Determination of Optimum Temperature. CO 6 Determination of optimum PH. CO 7 Effect of Activator and Inhibitor of Acid Phosphates' activity by EDTA.
--	--	--

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO ₂	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	M
CO5	S	S	S	S	S
CO6	S	S	S	S	S
CO7	S	S	S	S	S

SUBJECT NAME: PRACTICAL IV SUB CODE:

		CO 1 Identify and enumerate the total count of erythrocytes and leukocytes.
		CO 2 Differentiate leukocytes and calculate their total count.
Practical – IV		CO 3 Define and determine the erythrocyte sedimentation rate.
ematological Methods and Urine Analysis.	05	CO 4 Determine the packed cell volume and mean corpuscular volume.
		CO 5 Hematological clinical implications.
		CO 6 Utilize sphygmomanometer to determine the blood pressure
		CO 7 Qualitatively analyze the normal and abnormal constituents of urine sample

Mapping with Programme Outcomes

COS	PO1	PO2	PO3	PO4	PO5
CO1	S	M	S	S	S
CO2	S	S	S	S	M
CO3	S	S	S	S	S
CO4	S	S	S	S	M
CO5	S	S	S	S	S
CO6	S	S	S	S	S
CO7	S	S	S	S	S