K.M.G. COLLEGE OF ARTS & SCIENCE, GUDIYATTAM. P.G. & RESEARCH DEPARTMENT OF CHEMISTRY

Programme Name : M.Sc., CHEMISTRY

<u>S.No</u>	<u>OUTCOMES</u>
PO1	Domain knowledge: Demonstrate knowledge of basic concepts, principles and applications of the specific science discipline.
PO2	Resource Utilisation: Cultivate the skills to acquire and use appropriate learning resources including library, e
PO3	Analytical and Technical Skills: Ability to handle/use appropriate tools/techniques/equipment with an understanding of the standard operating procedures, safety aspects/limitations.
PO4	Critical thinking and Problem solving: Identify and critically analyse pertinent problems in the relevant discipline using appropriate tools and techniques as well as approaches to arrive at viable conclusions/solutions.
PO5	Project Management: Demonstrate knowledge and scientific understanding to identify research problems, design experiments, use appropriate methodologies, analyse and interpret data and provide solutions. Exhibit organisational skills and the ability to manage time and resources.
PO6	Individual and team work: Exhibit the potential to effectively accomplish tasks independently and as a member or leader in diverse teams, and in multidisciplinary settings.
PO7	Effective Communication: Communicate effectively in spoken and written form as well as through electronic media with the scientific community as well as with society at large. Demonstrate the ability to write dissertations, reports, make effective presentations and documentation.
PO8	Environment and Society: Analyse the impact of scientific and technological advances on the environment and society and the need for sustainable development.
PO9	Ethics: Commitment to professional ethics and responsibilities.
PO10	Life-long learning: Ability to engage in life-long learning in the context of the rapid developments in the discipline.

<u>S.No</u>	<u>OUTCOMES</u>
PSO-1	Apply principles of pharmaceutical chemistry, medicinal chemistry, analytical chemistry, organometallic chemistry, supramolecular chemistry, chemical process and laboratory skills for volumetric analysis, synthesis, separation, isolation and formulation.
PSO-2	Work with professional ethics in quality control and quality assurance sections of R&D sectors of different research laboratories
PSO-3	Apply knowledge of chemistry to excel in higher studies and field of research.
PSO-4	Application of research skills to pursue doctoral programme.
PSO-5	To be in a noble profession of teaching and helping in nation building.

Sub.Name: ORGANIC CHEMISTRY-I Sub.Code:DCH11 **Course Outcomes**

No.of Hours per week:4

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – I YEAR SEMESTER-1 (REGULATION: 2020- 2021)	ORGANIC CHEMISTRY-I	04	 CO1-The student will be able to Describe the concept of Stereochemistry CO2-Illustrate the importance of Conformation CO3-Analyze the mechanism of Aliphatic and Aromatic Substitution reactions CO4-cquire knowledge on the various concepts of reaction kinetics and mechanism CO5-To make the students learn and understand the concept of stereochemistry, conformational analysis and their application in the determination of reaction mechanism. CO6-To understand the mechanism of nucleophilic and electrophilic substitution reactions.

ORGANIC CHEMISTRY-I

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	М	М	S	S	S	М
CO2	S	М	М	S	М	S	S	М	S	М
CO3	S	М	S	S	S	М	М	S	S	S
CO4	М	М	S	S	М	S	S	S	S	М
CO5	М	S	М	М	S	М	S	М	М	S
CO6	S	М	S	S	S	М	М	S	S	S

Sub.Name: INORGANIC CHEMISTRY-I Sub Code:DCH12

No.of Hours per week:4

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – I YEAR SEMESTER-1 (REGULATION: 2020-2021)	INORGANIC CHEMISTRY-I	03	 CO1-Gain knowledge about the structure and bonding of Inorganic compounds. CO2-Explain Isopolyacids and hetropolyacids of Vanadium, Chromium, Molybdenum and Tungsten. CO3-Descirbe the structure, properties, correlation and applications of some Inorganic CO4-Polymers.llustrates the chemistry of metal clusters. CO5-Discuss polyhedral boranes, carboranes and metallocarboranes. CO6-Explain the stability constant of coordination complexes. CO7-Apply the stereo chemistry for coordination complexes.

INORGANIC CHEMISTRY-I

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	М	М	S	М	М	М
CO2	S	Μ	М	S	М	S	S	S	М	S
CO3	S	Μ	S	S	S	М	М	S	S	М
CO4	S	Μ	S	S	М	S	S	М	М	S
CO5	М	S	М	М	S	М	S	М	S	М
CO6	S	Μ	S	S	S	М	М	S	S	М
CO7	S	Μ	S	S	М	S	S	М	М	S

Sub.Name: PHYSICAL CHEMISTRY-I Sub.Code:DCH13

No.of Hours per week:4

Semester	Course Name	Course	Course Outcomes
		Credit	
M.Sc – I YEAR SEMESTER-1 (REGULATION: 2020-2021)	PHYSICAL CHEMISTRY -I	03	CO1-Explain partial molar properties and the concept of fugacity. CO2-Describe the phase diagrams of three component systems involving solid-liquid CO3-Describe the phase diagrams of three component systems involving liquid-liquid equilibria CO4-Gain the knowledge about micelles, surfactants, structure and stability of colloids. CO5-Illustrate the effect of pressure CO6- dielectric constant and ionic strength
			of the solution on the rate of the reaction.

PHYSICAL CHEMISTRY -I

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	М	М	S	S	Μ	М
CO2	S	Μ	М	S	М	S	S	М	S	S
CO3	S	М	S	М	S	М	М	М	S	М
CO4	M	М	S	S	М	S	S	S	Μ	S
CO5	М	S	М	М	S	М	S	М	S	М
CO6	S	М	S	М	S	М	М	М	S	М

Sub.Name: ADVANCE POLYMER CHEMISTRY Sub.Code:DECH14A

No.of Hours per week:3

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – I YEAR SEMESTER-1 (REGULATION: 2020-2021)	ADVANCE POLYMER CHEMISTRY	03	CO1-Understand the morphology and applications of polymers. CO2-Have the knowledge on classification, nomenclature and properties of polymers. CO3-Adequate knowledge on kinetics and mechanism of polymerisation. CO4-Understanding on characterization of polymers.

ADVANCE POLYMER CHEMISTRY:

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	М	М	S	S	М	S
CO2	S	М	М	S	М	S	S	М	S	S
CO3	S	М	S	S	S	М	М	S	М	М
CO4	М	М	S	S	М	S	S	S	S	S

Sub.Name: ORGANIC CHEMISTRY-II Sub.Code:DCH 21 **Course Outcomes**

No.of Hours per week:4

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – I YEAR		03	CO1-Elucidate the mechanism of addition
SEMESTER-2 (REGULATION: 2020-2021)	ORGANIC CHEMISTRY-II		 and elimination reactions CO2-Appreciate the synthetic usage of various oxidizing and reducing reagents CO3-Illustrate the importance of free radicals CO4-Describe the concept of aromaticity

ORGANIC CHEMISTRY-I

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	М	М	S	S	М	S
CO2	S	М	М	S	М	S	S	М	S	М
CO3	S	М	S	S	S	М	М	S	S	S
CO4	М	М	S	S	М	S	S	S	М	S

Sub.Name: INORGANIC CHEMISTRY-II

No.of Hours per week:4

Sub.Code:DCH 22 Course Outcomes

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – I YEAR SEMESTER-2 (REGULATION: 2020-2021)	INORGANIC CHEMISTRY-II	04	CO1-Explain about the structure and properties of solids. CO2-Describe the types of Nuclear reactions. CO3-Explain about the stellar energy. CO4-Discuss the types of Nuclear reactors. CO5-Illustrate the radio analytical methods CO6-Describe the chemistry of lanthanides and actinides. CO7-Applying Nanotechnology to various metals.

INORGANIC CHEMISTRY-II

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	М	М	S	М	S	М
CO2	S	М	М	S	М	S	S	S	М	S
CO3	S	М	S	S	S	М	М	S	М	М
CO4	М	М	S	S	М	S	S	М	М	S
CO5	М	S	М	М	S	М	S	М	S	М
CO6	S	М	М	S	М	S	S	S	М	S
CO7	S	М	S	S	S	М	М	S	М	М

Sub.Name: PHYSICAL CHEMISTRY-II Sub.Code:DCH 23 **Course Outcomes**

No.of Hours per week:4

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – I YEAR	PHYSICAL	03	CO1-Describe the rate expression for
SEMESTER-2	CHEMISTRY -II		complex reactions and experimental study of
			fast reactions.
(REGULATION: 2020-2021)			CO2-Describe Debeye-Huckel limiting law
			and Bronsted equation. \Box
			CO3-Explain the structures of double layer
			and deriving Lippmann equation.
			CO4-Apply group theory and finding the
			symmetries and point group to construct
			CO5-charactertables of C2V and C3V.

PHYSICAL CHEMISTRY –II

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	М	М	S	М	М	М
CO2	S	М	М	S	М	S	S	S	S	S
CO3	S	М	S	S	S	М	М	М	S	М
CO4	М	М	S	S	М	S	S	S	М	S
CO5	М	S	М	М	S	М	S	М	S	М

SEMESTER II Sub.Name: MODERN SEPARATION TECHNIQUES No.of Hours per week:3 Sub.Code:DECH 24A Course Outcomes

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – I YEAR SEMESTER-2 (REGULATION: 2020-2021)	MODERN SEPARATION TECHNIQUES	03	CO1-Have knowledge on principles on chromatography. CO2-Working knowledge on gas and HPCL chromatographic techniques. CO3-Adequate knowledge on application of ion-exchange chromatography.\ CO4-Understanding on solvent extraction CO5- Understanding on distillation techniques

MODERN SEPARATION TECHNIQUES:

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	S	S	М	М	S	М	М	S
CO2	S	М	М	S	М	S	S	М	S	S
CO3	S	Μ	S	S	S	М	М	S	М	S
CO4	M	Μ	S	S	М	S	S	М	S	S
CO5	М	S	М	М	S	М	S	S	М	М

No.of Hours per week:4

SEMESTER II Sub.Name: ORGANIC CHEMISTRY-PRACTICAL-I Sub.Code:DPCH 26 **Course Outcomes**

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – I YEAR SEMESTER-2 (REGULATION: 2020-2021)	ORGANIC CHEMISTRY- PRACTICAL-I	03	CO1-An ability to separate the mixture of organic compounds CO2-An ability to analyse the compounds separated from the mixture by chemical analysis CO3-Ability to find out the melting and boiling points of the compounds CO4- Ability to prepare organic compounds by two or three steps

ORGANIC CHEMISTRY-PRACTICAL1

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	М	М	S	М	S	S
CO2	S	М	М	S	М	S	S	S	М	М
CO3	S	М	S	S	S	М	М	S	М	S
CO4	М	М	S	S	М	S	S	М	М	S

SEMESTER II Sub.Name: INORGANIC CHEMISTRY-PRACTICAL-I Sub.Code:DPCH 27 **Course Outcomes**

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – I YEAR	INORGANIC	03	CO1-Use double burette method and burette
SEMESTER-2	CHEMISTRY- PRACTICAL1		-pipette methods for titration
			CO2 -Prepare standard solutions
(REGULATION: 2020-2021)			CO3-Conduct acid base titrations,
			complexometric titrations and redox
			titrations like permanganometry, dichrometry
			and iodometric-iodimetric titrations.
			CO4-An ability to analyse the cation mixture
			CO5-Ability to estimate the ions by
			complexometric titrations
			CO6-Ability to find out intensity of colour
			using colorimetric methods

INORGANIC CHEMISTRY- PRACTICAL-1

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	М	М	S	S	Μ	М
CO2	S	М	М	S	М	S	S	М	S	S
CO3	S	М	S	S	S	М	М	М	S	М
CO4	М	М	S	S	М	S	S	М	S	S
CO5	М	S	М	Μ	S	М	S	S	S	М
CO6	М	М	S	S	М	S	S	М	S	S

Sub.Name: PHYSICAL CHEMISTRY- PRACTICAL1 Sub.Code:DPCH 27 Course Outcomes

No.of Hours per week:4

Semester	Course Name	Course	Course Outcomes
		Credit	
M.Sc – I YEAR	PHYSICAL	03	CO1- Explain the Thermodynamics of ideal and Non-
SEMESTER-2	CHEMISTRY- PRACTICAL1		ideal solutions, Nernst distributionlaw and its applications.
(REGULATION: 2020-			
2021)			CO2- Draw and explain phase diagrams of one
			Component and two Component systems having
			congruent and incongruent melting points.
			CO3- Derive law of Chemical equilibrium and Van't
			Hoff isotherm.
			CO4- Determine molar mass from the colligative
			properties.
			CO5- Explain variation of conductivity with dilution,
			measurement of conductivity and concept of
			Transport Number and its determination.
			CO6- Explain Debye-Huckel Theory of strong
			electrolytes.

PHYSICAL CHEMISTRY- PRACTICAL -I

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	М	М	S	S	М	М
CO2	S	М	М	S	М	S	S	М	S	S
CO3	S	М	S	S	S	М	М	М	М	S
CO4	М	М	S	S	М	S	S	S	S	М
CO5	М	S	М	М	S	М	S	S	М	М
CO6	М	S	S	S	Μ	Μ	S	S	Μ	М

Sub.Name: MEDICINAL CHEMISTRY Sub.Code: DNCH28A **Course Outcomes**

No.of Hours per week:4

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – I YEAR	MEDICINAL	03	CO1- The students will be able to Appreciate
SEMESTER-2	CHEMISTRY		CO2- the importance of medicinal chemistry
			CO3- Acquire knowledge of classification of
(REGULATION: 2020-2021)			drugs
2020 2021)			CO4-Identify the importance of
			Chemotherapy
			CO5- Acquire knowledge of common body
			ailments Illustrte the importance of health
			promoting drugs

MEDICINAL CHEMISTRY

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	М	М	S	М	М	М
CO2	S	М	М	S	М	S	S	S	S	S
CO3	S	М	S	S	S	М	М	S	М	М
CO4	М	М	S	S	М	S	S	М	S	S
CO5	М	S	М	М	S	М	S	М	М	М

Sub.Name: ORGANIC CHEMISTRY-III Sub.Code:DCH31 **Course Outcomes**

No.of Hours per week:4

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – II YEAR SEMESTER-3 (REGULATION: 2020-2021)	ORGANIC CHEMISTRY-III	04	CO1- To understand the concepts of spectral techniques and to apply these techniques for the quantitative and structural analysis of organic compounds. CO2-To learn the chemistry of terpenes, alkaloids and free radicals and their importance. CO3-Visualize the importance of UV-Visible and IR spectroscopy. CO4-Acquire knowledge of vibrational transition and identify various functional groups CO5-Apply the concept of Mass spectroscopy to different compounds CO6-Elucidate the structure of organic compounds using NMR CO7-Solve photochemical and pericyclic problems CO8-Illustrate the synthesis of heterocycles

ORGANIC CHEMISTRY-III

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	S	М	М	S	М	М	S
CO2	S	М	М	S	М	S	S	М	S	S
CO3	S	М	S	S	S	М	М	S	М	М
CO4	М	Μ	S	S	М	S	S	Μ	S	S
CO5	М	S	М	М	S	М	S	S	М	S
CO6	S	Μ	М	S	М	S	S	М	S	М
CO7	S	М	S	S	S	М	М	S	S	S
CO8	М	М	S	S	М	S	S	S	S	М

Sub.Name: INORGANIC CHEMISTRY-III Sub.Code:DCH32 Course Outcomes

No.of Hours per week:4

Semester	Course Name	Course	Course Outcomes
		Credit	
M.Sc – II YEAR	INORGANIC	04	
SEMESTER-3	CHEMISTRY-III		CO1-To study about the Coordination complexes,
SEIVIESTER-3			Substitution in Coordination complexes and Inorganic
(REGULATION:			Photochemistry.
2020-2021)			CO2-Explain about carbon donors
			CO3-Describe the structure and bonding of metallocenes
			(ferrocenes)
			CO4-Illustrate the different types of reaction of organo
			metallic compounds.
			CO5-Discuss the various catalysis processes in organo
			metallic chemistry.
			CO6-Explain the Electron transfer reactions of co-
			ordination compounds.
			CO7-Describe the various substitution reactions of
			coordination compounds.
			CO8-Analyse various types of photochemical reactions.

ORGANIC CHEMISTRY-III

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	S	S	М	М	S	Μ	М	S
CO2	S	М	М	S	М	S	S	М	S	S
CO3	S	М	S	S	S	М	М	S	М	М
CO4	M	Μ	S	S	М	S	S	М	S	S
CO5	S	Μ	S	S	S	М	Μ	S	Μ	М
CO6	М	Μ	S	S	М	S	S	Μ	S	S
CO7	Μ	S	М	М	S	М	S	S	Μ	S
CO8	S	Μ	М	S	М	S	S	Μ	S	М

Sub.Name: PHYSICAL CHEMISTRY III Sub.Code:DCH33 **Course Outcomes** No.of Hours per week:4

Semester	Course Name	Course	Course Outcomes
		Credit	
M.Sc – II YEAR	PHYSICAL	04	CO1-To study the electrochemical kinetics, over
SEMESTER-3	CHEMISTRY III		potential, corrosions and fuel cells.
			CO2-To know the solid state and its properties.
(REGULATION: 2020-2021)			To Study the principles and applications of
,			spectroscopy.
			CO3-To study statistical thermodynamics,
			CO4-Derive Butler-Volmer equation and explain
			Pourbaix and Evan's diagram of corrosion.
			CO5-Explain electrical and magnetic properties
			of solids.
			CO6-Describe the basic principles and
			applications of microwace, vibrational, Raman,
			NMR and electronic spectroscopy.
			CO7-Compare Maxwell-Boltzmann and Fermi-
			Dirac and Bose-Einstein statistics.

PHYSICAL CHEMISTRY III

CO/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	М	М	S	S	М	S	М	М
CO2	S	М	S	М	М	S	М	М	S	S
CO3	М	М	S	S	S	М	S	М	S	М
CO4	S	S	М	S	S	S	S	S	М	М
CO5	S	М	S	М	М	S	М	S	М	S
CO6	S	S	М	S	S	М	S	М	S	М
CO7	М	S	S	М	М	S	S	S	М	S

Sub.Name: SCIENTIFIC RESEARCH METHODOLOGY No.of Hours per week:3 Sub.Code: DECH34A Course Outcomes

Semester **Course Name** Course **Course Outcomes** Credit CO1-To study about the importance of M.Sc – II YEAR 03 SCIENTIFIC research, SEMESTER-3 RESEARCH CO2- To study about literature survey METHODOLOGY (REGULATION: CO3-To study about statistical treatment. 2020-2021) CO4-To study about the conventions of writing thesis. CO5- To study about error analysis.

SCIENTIFIC RESEARCH METHODOLOGY

CO/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	М	М	S	S	М	S	М	М
CO2	S	М	S	М	М	S	М	М	S	S
CO3	М	М	S	S	S	М	S	М	S	М
CO4	S	S	М	S	S	S	S	S	М	М
CO5	S	М	S	М	М	S	М	S	М	S

Sub.Name: ORGANIC CHEMISTRY-IV

Sub.Code: DCH 41 Course Outcomes

Course Outcomes Semester **Course Name** Course Credit M.Sc – II YEAR 04 CO1-To understand the concepts of Aromaticity, ORGANIC Photochemical Reactions, Antibiotics and proteins. **SEMESTER-4** CHEMISTRY-IV Applications and Techniques of Dyeing (REGULATION: CO2-Develop problem solving skills requiring 2020-2021)) application of chemical reaction. CO3-Acquire knowledge of terpenes and alkaloids. CO4-Elucidate the structure of proteins and nucleic acids. CO5-Solve problems related to molecular rearrangements CO6-Attain skills on separation and purification of organic compounds.

ORGANIC CHEMISTRY-IV

CO/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	М	М	S	S	М	S	М	М
CO2	S	М	S	М	М	S	М	М	S	S
CO3	М	М	S	S	S	М	S	М	S	М
CO4	S	S	М	S	S	S	S	S	М	М
CO5	S	М	S	М	М	S	М	S	М	S
CO6	S	S	М	S	S	М	S	М	S	М

Sub.Name: INORGANIC CHEMISTRY-IV

No.of Hours per week:4

Sub.Code: DECH 43A Course Outcomes

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – II YEAR SEMESTER-4 (REGULATION: 2020-2021)	INORGANIC CHEMISTRY-IV	04	 CO1- Illustrate the principle, instrumentation and applications of AAS, AES and AFS. CO2-Explain the different types of inorganic spectra and also interpretation. CO3-Applying and interpreting ESR spectrums of various inorganic compounds. CO4-Describe Koopman's theorem, structure, chemical shift. CO5-correlation with electronic charges of photo electron spectroscopy.

INORGANIC CHEMISTRY-IV

CO/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	М	S	М	М	S	S	М	S	М	М
CO2	S	М	S	М	М	S	М	М	S	S
CO3	М	М	S	S	S	М	S	М	S	М
CO4	S	S	М	S	S	S	S	S	М	М
CO5	S	М	S	М	М	S	М	S	М	S
CO6	S	S	М	S	S	М	S	М	S	М

Sub.Name: PHYSICAL CHEMISTRY IV No.of Hours per week:4 Sub.Code: DCH 42 Course Outcomes

Semester	Course Name	Course Credit	Course Outcomes
Semester M.Sc – II YEAR SEMESTER-4 (REGULATION: 2020-2021)	Course Name PHYSICAL CHEMISTRY IV	Course Credit 04	Course Outcomes CO1-To study the principles of photochemical reactions. CO2-To study the Experimental methods and kinetics studies of photochemical reactions. CO3-Study of electrode - electrolytic interface. CO4-To study the fundamental principles of quantum chemistry and its application to chemical bonding. CO5- Schrödinger wave equation and its
			applications.
			CO6-To study statistical thermodynamics, quantum statistics and irreversible thermodynamics.

PHYSICAL CHEMISTRY IV

CO/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	М	S	М	М	S	S	М	S	М	М
CO2	S	М	S	М	М	S	М	М	S	S
CO3	М	М	S	S	S	М	S	М	S	М
CO4	S	S	М	S	S	S	S	S	М	М
CO5	S	М	S	М	М	S	М	S	М	S
CO6	S	S	М	S	S	М	S	М	S	М

Sub.Name: ORGANIC CHEMISTRY- PRACTICAL-2 Sub.Code: DPCH 45 **Course Outcomes**

No.of Hours per week:4

Semester	Course Name	Course Credit	Course Outcomes
M.Sc – II YEAR SEMESTER-4 (REGULATION: 2020-2021)	ORGANIC CHEMISTRY- PRACTICAL-2	03	CO1-Students can expertise the estimation of reducing sugar, amino group, phenolic group CO2-Students can expertise the estimation of esters volumetrically CO3- Students can expertise the estimation of vitamin A, drugs and anti-biotics colorimetrically CO4-Students will expertise the extraction of natural products and purification by column and TLC CO5-Students can expertise preparation of TLC plate activation and identification of compounds dyes,food additives, food colours, amino acids, sugars, pesticides and herbicides

ORGANIC CHEMISTRY- PRACTICAL-2

CO/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Μ	S	М	М	S	S	М	S	Μ	М
CO2	S	М	S	М	М	S	М	М	S	S
CO3	Μ	М	S	S	S	М	S	Μ	S	М
CO4	S	S	М	S	S	S	S	S	М	М
CO5	S	М	S	М	М	S	М	S	М	S

Sub.Name: ORGANIC CHEMISTRY- PRACTICAL-2

No.of Hours per week:4

Sub.Code: DPCH 46 Course Outcomes

Semester	Course Name	Course	Course Outcomes
		Credit	
M.Sc – II YEAR	INORGANIC	02	CO1-Ability to quantitatively separate binary
SEMESTER-4	CHEMISTRY-	03	mixtures of ions in solution
(REGULATION:	PRACTICAL-2		CO2-Estimation by volumetric, colorimetric
(RECOLATION. 2020-2021))			CO3Estimation by gravimetric methods
			CO4- Ability to separate binary mixtures by
			ion-exchange method
			CO5- Ability to prepare inorganic complexes

INORGANIC CHEMISTRY- PRACTICAL-2

CO/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	М	М	S	S	М	S	M	М
CO2	S	М	S	М	М	S	М	М	S	S
CO3	М	М	S	S	S	М	S	М	S	М
CO4	S	S	М	S	S	S	S	S	М	М
CO5	S	М	S	М	Μ	S	Μ	S	М	S

Sub.Name: PHYSICAL CHEMISTRY- PRACTICAL-2 Sub.Code: DPCH 47 **Course Outcome:** No.of Hours per week:4

Semester	Course Name	Course	Course Outcomes
		Credit	
M.Sc – II YEAR	PHYSICAL	03	CO1- Draw and explain phase diagrams of one
	CHEMISTRY-		Component and two Component systems having
SEMESTER-4	PRACTICAL1		congruent and incongruent melting points.
(REGULATION:			
2020-2021)			CO2- Derive law of Chemical equilibrium and Van't
2020 2021)			Hoff isotherm.
			CO3- Determine molar mass from the colligative
			properties.
			CO4- Explain variation of conductivity with dilution,
			measurement of conductivity and concept of Transport
			Number and its determination.
			CO5- Explain Debye-Huckel Theory of strong
			electrolytes.

PHYSICAL CHEMISTRY- PRACTICAL 2

CO/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	М	М	S	S	М	S	М	М
CO2	S	M	S	М	М	S	М	М	S	S
CO3	М	М	S	S	S	М	S	М	S	М
CO4	S	S	М	S	S	S	S	S	М	М
CO5	S	М	S	М	М	S	М	S	М	S

HOD