

K.M.G. COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)

Approved by the Government of Tamil Nadu Permanently Affiliated to Thiruvalluvar University, Vellore Recognized under Section 2(f) and 12(B) of the UGC Act 1956 Accredited by NAAC (2nd Cycle) with (CGPA of 3.24/4) 'A' Grade

P.G. AND RESEARCH DEPARTMENT OF BIOCHEMISTRY

M.Sc., BIOCHEMISTRY

SYLLABUS
(CHOICE BASED CREDIT SYSTEM)

Under

LEARNING OUTCOMES-BASED CURRICULUM

FRAMEWORK (LOCF)

(Effective for the Batch of Students Admitted from 2024-2025)

PREFACE

The curriculum of postgraduate Biochemistry has been designed to explain the concepts in various fields of Biochemistry such as Molecular Biology, Biotechnology, Immunology etc... And also explain both general and clinical Biochemistry. The purpose of the outcome-based education is meant to provide an exposure to the fundamental aspects in different area of Biochemistry and its applications, keeping in mind the growing needs for higher education, employability, entrepreneurship and social responsibility. The periodical restructuring of the syllabi is carried out to fulfill the requirements of graduate attributes, qualification descriptors, programme learning outcomes and course outcomes. The outcome-based education enriches the curriculum to deliver the basic principles, synthetic strategies, mechanisms and applicationoriented learning for the benefit of students. It also includes self-learning module, minor projects and industrial internship to enable students to get equipped for higher studies and employment. The programme also includes training to students for seminar presentation, preparation of internship reports, hands-on training in lab courses, skills to handle instruments, synthesis and its analysis, developing leadership qualities, organization and participation in the interdepartmental academic competitions. The elective courses offer chances to learn and augment interest in other related fields. The outcome-based curriculum is intended to enrich the learning pedagogy to global standards. ICT enabled teaching-learning platforms are provided to students along with the interaction of international scientists. The OBE based evaluation methods will reflect the true cognitive levels of the students as the curriculum is designed with course outcomes and cognitive level correlations as per Biochemistry.

ABOUT THE COLLEGE

The College was founded in the new millennium 2000 by the vision of late Shri.K.M.Govindarajan fondly known as Ayah, with a mission to offer higher education in the fields of Arts and Science to the needy and the poor middle class students of this area and make them fully employable and economically self reliant. With a humble beginning of launching an elementary school named Thiruvalluvar Elementary School in the year 1952, Ayah groomed it into a Higher Secondary School and later into a college. Education was his soul & breathe. The college has grown into a full-fledged educational hub offering 12 under graduate programmes, 8 post graduate programmes, 5 M.Phil research programmes and 4 Ph.D programmes. The college has been accredited with 'A' grade by NAAC in 2nd cycle and recognized under section 2(f) & 12(B) of the UGC act 1956. The College is permanently affiliated to Thiruvalluvar University. The College is also acquired the status of Autonomous from the academic year 2024-2025. The College is an associate member of ICT Academy and registered member of NPTEL and Spoken Tutorials of IIT Bombay. The college is also a member of INFLIBNET and NDL.

VISION OF THE COLLEGE

➤ Empower young men and women by educating them in the pursuit of excellence, character building and responsible citizen.

MISSION OF THE COLLEGE

➤ Offer higher education in the fields of Arts, Science & Management to the needy and make them fully self-dependent.

QUALITY POLICY OF THE COLLEGE

KMG Students achieve the best learning results and personal growth with modern education that equip them for working life and a changing society to become deserving citizens.

ABOUT THE DEPARTMENT

The knowledge of basic science is essential for the sustainable development of the society. To get the basic knowledge in Biochemistry to young students the Department of Bio chemistry initiated in the academic year 2000-2003. The objective of our department is to motivate students to excel in Biochemistry at the global level, which is necessary for Biochemists getting placement as well as becoming an entrepreneur in future. The department was uplifted as the post graduate department in the year 2004-2006. The department has been recognized as a research department since 2008 to offer M.Phil., Followed that the Thiruvalluvar University accorded recognition to the Department as a centre for Doctoral research in Biochemistry from 2019-2020. The focus of the department is the holistic development of the students and involves them in curricular and co-curricular activities. The Bio Chemistry Department pledges itself to serve in the broadest, innovative and most liberal manner towards the advancement of Biochemistry in all of its branches through academics, research and service missions upholding the values and entrepreneurial skills. The job potential to the biochemist is very high now and opportunities to provoke research in biochemistry are ample. Needless to say that for a developing country likes ours, "BIOCHEMISTRY IS OUR LIFE AND FUTURE".

VISION OF THE DEPARTMENT

➤ Produce World class academicians, Scientist, Industrialist and entrepreneurs in the field of Biochemistry.

MISSION OF THE DEPARTMENT

- > To educate and inspire the young minds from the basics to the latest innovations in science.
- ➤ Inculcate strong theoretical, practical, research and analytical skills in the subject domains and thereby prepare the students for both employability and entrepreneurship.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **1. Professional Excellence:** Graduates will demonstrate competency and excellence in their chosen fields of study, applying theoretical knowledge to practical situations effectively.
- **2.** Character Development: Graduates will exhibit strong moral and ethical character, upholding values of integrity, honesty, and respect for others in both personal and professional endeavors.
- **3.** Leadership and Citizenship: Graduates will emerge as responsible leaders and active citizens, contributing positively to their communities and society at large through their actions and initiatives.
- **4. Continuous Learning:** Graduates will engage in lifelong learning and professional development activities, adapting to evolving technologies, methodologies, and societal needs.
- **5. Self-Dependency and Entrepreneurship:** Graduates will possess the skills and mindset necessary to be self-reliant and entrepreneurial, capable of creating opportunities for themselves and others through innovation and initiative.
- **6. Effective Communication and Collaboration:** Graduates will demonstrate proficiency in communication skills, both verbal and written, and exhibit the ability to collaborate effectively with diverse teams and stakeholders.
- **7. Global Perspective:** Graduates will have a broad understanding of global issues and perspectives, demonstrating cultural sensitivity and adaptability in multicultural environments.

PROGRAM OUTCOMES (POs)

On successful completion of the programme, the students will be able to:

POs	Graduate Attributes	Statements
PO1	Problem Solving Skill	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context
PO2	Decision Making Skill	Foster analytical and critical thinking abilities for data- based decision-making
PO3	Ethical Value	Ability to incorporate quality, ethical and legal value-basedperspectives to all organizational activities.
PO4	Communication Skill	Ability to develop communication, managerial and interpersonal skills
PO5	Individual and Team Leadership Skill	Capability to lead themselves and the team to achieve organizational goals.
PO6	Employability Skill	Inculcate contemporary business practices to enhance employabilityskills in the competitive environment.
PO7	Entrepreneurial Skill	Equip with skills and competencies to become an entrepreneur
PO8	Contribution to Society	Succeed in career endeavors and contribute significantly to society
PO 9	Multicultural competence	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.
PO10	Moral and ethical awareness/reasoning	Ability to embrace moral/ethical values in conducting one's life.

PROGRAM SPECIFIC OUTCOMES (PSOs)

On successful completion of the M.Sc., Biochemistry, the students will be able to:

PSOs	Statements
PSO1	Understand the principles and methods of various techniques in Biochemistry, Immunology, Microbiology, Enzyme kinetics and Molecular Cell Biology. Based on their understanding, the students may would be able to design and execute experiments during their final semester project, and further research programs.
PSO2	Insight on the structure-function relationship of biomolecules, their synthesis and breakdown, the regulation of these pathways, and their importance in terms of clinical correlation. Students will also acquire knowledge of the principles of nutritional biochemistry and also understand diseases and their prevention.
PSO3	Understand the concepts of cellular signal transduction pathways and the association of aberrant signal processes with various diseases. Acquire insight into the immune system and its responses, and use this knowledge in the processes of immunization, vaccine development, transplantation and organ rejection.

Correlation Rubrics:

High	Moderate	Low	No Correlation		
3	2	1	-		

Mapping of PSOs with POs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
PSO1	3	3	3	3	1	3	3	3	3	3
PSO2	3	2	3	2	2	3	3	3	3	3
PSO3	3	3	3	3	2	3	3	3	3	3

K.M.G. COLLEGE OF ARTS AND SCIENCE

(AUTONOMOUS)

Subject and Credit System- M.Sc., Biochemistry

(Effective for the Batch of Students Admitted from 2024-2025)

	Par		Course		Ins.H		Maxii	num Mar	ks				
Semester	t	Category Course Title Code				Credit	Internal	Externa l	Tot al				
		Code		75	100								
R- I	I	Core II	APCBC12		07	05	25	75	100				
SEMESTER -	Part -	Core III	APCPBC13	Practical I- Biomolecules and		04	25	75	100				
[W]		Elective – I	APEBC14	Microbiology & Immunology	05	03	25	75	100				
SI		Elective – II	APEBC15	Energy and Drug metabolism	05	03	25	75	100				
				Semester Total	30	20							
		Core-IV	APCBC21	Enzymology	06	05	25	75	100				
		Core-V	APCBC22	Cellular Metabolism	06	05	25	75	100				
Π-	rt - I		- 1	- 1		Core – VI	APCPBC23		06	04	25	75	100
SEMESTER	Part	-	APEBC24	Biostatistics and Data Science	03	03	25	75	100				
EME			APEBC25	Biosafety, Lab Safety and IPR	03	03	25	75	100				
∞		SEC-I	APSBC26	Nutritional Biochemistry	04	02	25	75	100				
	Part II	Compulsory	APHR20	Human Rights	02	02	25	75	100				
		Compulsory APMOOC20 MOOC		-	02	-	100	100					
		Semester Total	30	26									

		Core-VII	APCBC31	Physiology and Cell Biology	06	05	25	75	100
		Core-VIII	APCBC32	Clinical Biochemistry	06	05	25	75	100
	<u> </u>	Core – IX	APCPBC34	Practical III-Clinical Biochemistry	06	05	25	75	100
H-	Part	Core – X	APCBC33	Molecular Biology	06	04	25	75	100
SEMESTER -	Discipline Centric Elective - V APEBC35 Biochemical Toxicology		03	03	25	75	100		
SEM	t - II	SEC-II	APSBC36	Molecular Basis of Diseases and Therapeutic strategies	03	02	25	75	100
	Part	Compulsory	APIBC37	Internship/ Industrial Activity	-	02	100	-	100
				Semester Total	30	26			
		Core-XI	APCBC41	Gene editing, Cell and Gene therapy	06	05	25	75	100
	н	Core-XII	APCBC42	Pharmaceutical Biochemistry	06	05	25	75	100
2	Part -	Core-XIII	APPBC43	Project and viva-voce	10	07	25	75	100
2		Elective-VI	APEBC44	Industrial Microbiology	04	03	25	75	100
SEMESTER - IV	Part - II	Skill Enhancement course / Professional Competency Skill	APSBC45	Developmental Biology and Endocrinology	04	02	25	75	100
	Part III	Compulsory	APEA40	Extension Activity		01	100	-	100
				Semester Total	30	23			
				Total		95			

Consolidated Semester wise and Component wise Credit distribution

Parts	Semester-I	Semester-II	Semester-III	Semester-IV	Total Credits
Part-I	Part-I 20		22	20	82
Part-II	-	06	04	02	12
Part-III	-	-	-	01	01
Total	20	26	26	23	95

^{*}Part I, Part II and Part III components will be separately taken into account for CGPA calculation and classification for the post graduate programme and has to be completed during the duration of the programme as per the norms, to be eligible for obtaining the PG degree.

.

Title of the Course	BASICS OF BIOCHEMISTRY	Hours/Week	07
Course Code	APCBC11	Credits	05
Category	Core I	Year & Semester	I & I
Prerequisites	B.Sc Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

- > Students will be introduced to the structure of biomolecules.
- The significance of carbohydrates in biological processes will be understood.
- > The structure, properties and biological significance of lipids in the biological system will be studied
- > Students will learn about the concepts of protein structure and their significance in biological processes and creatively comprehend therole of membrane components with their biological significance.
- > Students will gain knowledge about the structures and functionalroles of nucleic acids in the biological system.

UNITS	Contents	COs	Cognitive Levels
I-LINO	Carbohydrates- Classification, structure (configurations and conformations, anomeric forms), function and properties of monosaccharides, mutarotation. Disaccharides and oligosaccharides with suitable examples. Polysaccharides - Homopolysaccharides (starch, glycogen, cellulose, inulin, dextrin, agar, pectin, dextran). Heteropolysaccharides - Glycosaminoglycans- source, structure, functions of hyaluronic acid, chondroitin sulphates, heparin, keratan sulphate. Glycoproteins - proteoglycans. O- Linked and N-linked glycoproteins. Biological significance of glycan. Blood group polysaccharides. Bacterial cell wall (peptidoglycans, teichoic acid).	CO1 CO3	K1 K2 K3
II-LINO	Lipids – Classification of lipids, structure, properties and functions of fatty acids, triacylglycerols, phospholipids, glycolipids, sphingolipids and steroids – Biological importance. Eicosanoids- classification, structure and functions of prostaglandins, thromboxanes, leukotrienes. Lipoproteins – Classification, structure, transport (endogenous and exogenous Pathway) and their biological significance.	CO1 CO2 CO3	K1 K2 K3 K4

UNIT-III	Overview of Aminoacids - classification, structure and properties of amino acids, Biological role. Non Protein aminoacids and their biological significance. Proteins – classification based on composition, structure and functions. Primary, secondary, super secondary (motifs) (Helix-turn – helix, helix-loop-helix, Beta-alpha-beta motif, Rosemann Rossmann fold, Greek key), tertiary and quaternary structure of proteins. Structural characteristics of collagen and hemoglobin. Determination of amino acid sequence. Chemical synthesis of a peptide, Forces involved in stabilization of protein structure. Ramachandran plot. Folding of proteins. Molecular chaperons – Hsp 70 and Hsp 90 - biological role.	CO3 CO4	K1 K2 K3 K5
UNIT-IV	Membrane Proteins - Types and their significance. Cytoskeleton proteins - actin, tubulin, intermediate filaments. Biological role of cytoskeletal proteins. Membrane structure-fluid mosaic model	CO2 CO3 CO4	K1 K2 K3
UNIT-V	Nucleic acids – types and forms (A, B, C and Z) of DNA. Watson- Crick model-Primary, secondary and tertiary structures of DNA. Triple helix and quadruplex DNA. Mitochondrial and chloroplast DNA. DNA supercoiling (calculation of Writhe, linking and twist number). Determination of nucleic acid sequences by Maxam Gilbert and Sanger's methods. Forces stabilizing nucleic acid structure. Properties of DNA and RNA. Cot curve. Major and minor classes of RNA, their structure and biological functions.	CO2 CO3 CO4 CO5	K1 K2 K3 K5 K6

- 1. David L.Nelson and Michael M.Cox (2012) Lehninger, Principles of Biochemistry (6th ed) W.H. Freeman.
- 2. Voet.D & Voet. J.G (2010) Biochemistry, (4th ed), John Wiley & Sons, Inc.
- 3. Metzler D.E (2003). The chemical reactions of living cells (2nd ed), Academic Press.

Reference Books

- 1. Maron, S. H. and Prutton C. P. Principles of Physical Chemistry,4th ed.; The Macmillan Company: Newyork,1972.
- 2. Lee, J. D. Concise Inorganic Chemistry, 4th ed.; ELBS William Heinemann: London, 1991.
- 3. Gurudeep Raj, Advanced Inorganic Chemistry, 26thed; Goel Publishing House: Meerut, 2001.
- 4. Atkins, P.W. & Danier, Paula, J. Physical Chemistry, 10th ed.; Oxford University Press: New York, 2014.
- 5. Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed; Addison, Wesley Publishing Company: India, 1993.

Website and e-learning source

- 1. https://bio.libretexts.org/Bookshelves/Biochemistry/Book%3A_Biochemistry_Online_(Jakubowski)
- 2. https://www.thermofisher.com/in/en/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource- library/pierce-protein-methods/protein-glycosylation.html
- 3. https://ocw.mit.edu/courses/biology/7-88j-protein-folding-and- human-disease-spring-2015/study-materials/
- 4. https://www.open.edu/openlearn/science-maths- technology/science/biology/nucleic-acids-and-chromatin/content- section- 3.4.2
- 5. https://www.genome.gov/genetics-glossary/Cell-Membrane
- 6. https://nptel.ac.in/content/storage2/courses/102103012/pdf/mod3.pdf

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Explain the chemical structure and functions of carbohydrates	K1,K2
CO2	Using the knowledge of lipid structure and function, explain how it plays a role in.	K1,K2,K4
CO3	Describe the various levels of structural organization of proteins and the role of proteins in biological system	K1,K2,K3
CO4	Apply the knowledge of proteins in cell interactions.	K3,K4
CO5	Applying the knowledge of nucleic acid sequencing in research and diagnosis	K1,K2,K6

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	-	-	-	-	-	3	3	3
CO2	3	1	2	2	2	1	1	1	-	1	3	3	3
CO3	2	2	3	3	2	-	-	2	-	1	3	3	3
CO4	3	1	3	1	2	1	-	-	-	-	3	2	2
CO5	3	3	2	3	2	2	-	-	1	1	3	3	3

Title of the Course	BIOCHEMICAL AND MOLECULAR BIOLOGY TECHNIQUES Hours/Week		07
Course Code	APCBC12	Credits	05
Category	Core II	Year & Semester	I & I
Prerequisites	B.Sc Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

- > To understand the various techniques used in biochemical investigation and microscopy.
- > To explain chromatographic techniques.\ and their applications
- To explain electrophoretic techniques.
- > To comprehend the spectroscopic techniques and demonstrate their applications in biochemical investigations.
- > To acquire knowledge of radio labelling techniques and centrifugation

UNITS	Contents	COs	Cognitive Levels
UNIT-I	General approaches to biochemical investigation, cell culture techniques and microscopic techniques. Organ and tissue slice technique, cell distribution and homogenization techniques, cell sorting, and cell counting, tissue Culture techniques. Cryopreservation, Biosensors- principle and applications. Principle, working and applications of light microscope, dark field, phase contrast and fluorescent microscope. Electron microscope-Principle, instrumentation of TEM and SEM, Specimen preparation and applications-shadow casting, negative staining and freeze fracturing.	CO1 CO3	K1 K2 K3
UNIT-II	Chromatographic Techniques: Basic principles of chromatography- adsorption and partition techniques. Adsorption Chromatography — Hydroxyapatite chromatography and hydrophobic interaction Chromatography. Affinity chromatography. Gas liquid chromatography- principle, instrumentation, column development, detectors and applications. Low pressure column chromatography — principle, instrumentation, column packing, detection, quantitation and column efficiency, High pressure liquid chromatography- principle, instrumentation, delivery pump, sample injection unit, column packing, development, detection and application. Reverse HPLC, Capillary Electro Chromatography (CEC) and perfusion chromatography.	CO1 CO2 CO3	K1 K2 K3 K4

UNIT-III	Electrophoretic Techniques: General principles of electrophoresis, supporting medium, factors affecting electrophoresis, Isoelectric focusing-principle, ampholyte, development of pH gradient and application. PAGE-gel casting-horizontal, vertical, slab gels, sample application, detection-staining using CBB, silver, fluorescent stains. SDS PAGE-principle and application in molecular weight determination principle of disc gel electrophoresis, 2D PAGE. Electrophoresis of nucleic acids-agarose gel electrophoresis of DNA, Electrophoresis of RNA, curve. Microchip electrophoresis and 2D electrophoresis, Capillary electrophoresis.	CO3 CO4	K1 K2 K3 K5
UNIT-IV	Spectroscopic techniques: Basic laws of light absorption- principle, instrumentation and applications of UV-Visible, IR, ESR, NMR, Mass spectroscopy, Turbidimetry and Nephelometry. Luminometry (Luciferase system, chemiluminescence). X - ray diffraction. Atomic absorption spectroscopy - principle and applications - Determination of trace elements.	CO2 CO3 CO4	K1 K2 K3 K5
UNIT-V	Radiolabeling Techniques and Centrifugation: Nature of radioactivity-detection and measurement of radioactivity, methods based upon ionization (GM counter) and excitation (scintillation counter), autoradiography and applications of radioactive isotopes, Biological hazards of radiation and safety measures in handling radioactive isotopes. Basic principles of Centrifugation. Preparative ultracentrifugation - Differential centrifugation, Density gradient centrifugation. Analytical ultracentrifugation - Molecular weight determination.	CO2 CO3 CO4 CO5	K1 K2 K3 K5 K6

- 1. Keith Wilson, John Walker (2010) Principles and Techniques of Biochemistry and Molecular Biology (7th ed) Cambridge University Press.
- 2. David Sheehan (2009), Physical Biochemistry: Principles and Applications (2nd ed), Wiley-Black well.
- 3. David M. Freifelder (1982) Physical Biochemistry: Applications to Biochemistry and Molecular Biology, W.H.Freeman.
- 4. Rodney F.Boyer (2012), Biochemistry Laboratory: Modern Theory and techniques, (2nd ed), Prentice Hall.
- 5. Kaloch Rajan (2011), Analytical techniques in Biochemistry and Molecular Biology, Springer.
- 6. Segel I.H (1976) Biochemical Calculations (2nd ed), John Wiley and Sons Robyt JF (2015) Biochemical techniques: Theory and Practice (1st ed), CBS Publishers & Distributors

Reference Books

- 1. Kaloch Rajan (2011), Analytical techniques in Biochemistry and Molecular Biology, Springer.
- 2. Segel I.H (1976) Biochemical Calculations (2nd ed), John Wiley and Sons.
- 3. Robyt JF (2015) Biochemical techniques: Theory and Practice (1st ed), CBS Publishers & Distributors.

Website and e-learning source

- 1. https://bio.libretexts.org/Bookshelves/Biochemistry/Book%3A_Biochemistry_Online_(Jakubowski).
- 2. https://www.thermofisher.com/in/en/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/protein-glycosylation.html

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Attain good knowledge in modern used in biochemical investigation and microscopy and apply the experimental protocols to plan and carry out simple investigations in biological research.	K1, K5
CO2	Demonstrate knowledge to implement the theoretical basis of chromatography in upcoming practical course work)	K3, K5
CO3	Demonstrate knowledge to implement the theoretical basis of electrophoretic techniques in research work	K1,K2,K3,K5
CO4	Tackle more advanced and specialized spectroscopic techniques that are pertinent to research	K1, K2 & K5
CO5	Tackle more advanced and specialized radioisotope and centrifugation techniques that are pertinent to research work	K1, K2 & K5

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2	1	-	-	1	3	3	3
CO2	3	1	3	2	2	1	1	1	-	1	3	3	3
CO3	3	2	3	3	2	2	-	1	-	1	3	2	3
CO4	3	2	3	1	2	1	1	1	-	1	2	3	3
CO5	3	3	3	3	2	2	1	1	-	1	3	2	3

Title of the Course	PRACTICAL I: BIOMOLECULES AND BIOCHEMICAL TECHNIQUES	Hours/Week	06
Course Code	APCPBC13	Credits	04
Category	Core III	Year & Semester	I & I
Prerequisites	B.Sc Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

- ➤ To instill skill in students enabling them to apprehend the wider knowledge about principles and techniques to be employed for the biomolecules under investigation.
- ➤ To inculcate the knowledge of various isolation and purification techniques of macromolecules like DNA, RNA, Glycogen and Starch,
- To perform colorimetric estimations to quantify important metabolites like lactate and tryptophan and minerals like calcium andiron from various sources.
- ➤ To achieve training in subcellular fractionation and to identify themby markers.
- ➤ 5 To achieve training in various chromatographic techniques.
- ➤ To perform the isolation and identification of the organelles of a cellusing differential centrifugation.
- > To perform photochemical screening and quantification enabling them to give an insight on phytochemicals this will be useful forfuture research.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Biochemical studies and estimation of macromolecules 1. Isolation and estimation of glycogen from liver. 2. Isolation and estimation of DNA from animal tissue. 3. Isolation and estimation of RNA from yeast. 4. Purification of Polysaccharides –Starch and assessment of its purity	CO1 CO3	K1,K2 K3,K5
UNIT-II	 UV absorption Denaturation of DNA and absorption studies at 260nm. Denaturation of Protein and absorption studies at 280nm. 	CO1 CO2 CO3	K1,K2 K3,K4 K5

UNIT-III	Colorimetric estimations 1.Estimation of Pyruvate. 2.Estimation of tryptophan.	CO3 CO4	K1,K2 K3,K5
UNIT-IV	Estimation of minerals 1. Estimation of calcium. 2. Estimation of iron.	CO2 CO3 CO4	K1, K2, K3, K5
UNIT-V	 Plant Biochemistry Qualitative analysis Phytochemical screening. Estimation of Flavonoids -Quantitative analysis Group Experiments Fractionation of sub-cellular organelles by Differential centrifugation- Mitochondria and nucleus. Identification of the separated sub-cellular fractions using markerenzymes (any one). Separation and identification of lipids by thin layer chromatography. Separation of plant pigments from leaves by column Chromatography. Identification of Sugars by Paper Chromatography. Identification of Amino acids by Paper Chromatography 	CO2 CO3 CO4 CO5	K1 K2 K3 K5 K6

- 1. David Plummer (2001) An Introduction to Practical Biochemistry(3rd ed) McGraw Hill Education (India) Private Ltd.
- 2. Jayaraman, J (2011), laboratory Manual in Biochemistry, New agepublishers.
- 3. Varley H (2006) Practical Clinical Biochemistry (6th ed), CBSPublishers.
- 4. O. Debiyi and F. A. Sofowora, (1978) "Phytochemical screening of medical plants," Iloyidia, vol. 3, pp. 234–246.
- 5. Prof. Sarin A. Chavhan, Prof. Sushilkumar A. Shinde (2019) AGuide to Chromatography Techniques Edition:1
- 6. Analytical techniques in Biochemistry and Molecular Biology; Katoch, Rajan. Springer (2011)

Reference Books

- 1. O. Debiyi and F. A. Sofowora, (1978) "Phytochemical screening of medical plants," Iloyidia, vol. 3, pp. 234–246,
- 2. Prof. Sarin A. Chavhan, Prof. Sushilkumar A. Shinde (2019) AGuide to Chromatography Techniques Edition:1
- 3. Analytical techniques in Biochemistry and Molecular Biology; Katoch, Rajan. Springer (2011)

Website and e-learning source

- 1. https://www.researchgate.net/publication/313745155_Practical_Bio chemistry_A_Student_Companion
- 2. https://doi.org/10.1186/s13020-018-0177
- 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5368116/
- 4. https://www.life.illinois.edu/biochem/455/Lab%20exercises/2Photometry/spectrophotometry.pdf
- 5. https://ijpsr.com/bft-article/determination-of-total-flavonoid-and- phenol-content-in-mimusops-elengi-linn/?view=fulltext
- 6. https://skyfox.co/wp-content/uploads/2020/12/Practical-Manual-of-Biochemistry.pdf

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	The student will be able to understand the isolation, purification and estimation of different biomolecules.	K1, K2, K4
CO2	The students will get acquainted the UV absorption studies of DNA and Protein.	K1,K2, K 3, K4
CO3	The student will be fine-tune in handling the instruments like colorimeter and spectrophotometer.	K1,K2,K4
CO4	The student can learn to detect the presence of phytochemicals and quantify.	K1,K2,K3,K4 & K6
CO5	The students will develop skill in analytical and Chromatography techniques.	K1, K2,K3,K4 & K6

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	1	1	-	-	-	3	3	3
CO2	3	3	3	2	3	1	1	1	-	1	3	1	3
CO3	3	3	3	3	2	1	2	1	-	1	2	3	3
CO4	3	3	3	2	3	2	2	1	-	-	3	2	3
CO5	3	3	2	2	2	2	2	1	1	1	3	3	2

Title of the Course	MICROBIOLOGY & IMMUNOLOGY	Hours/Week	05
Course Code	APEBC14	Credits	03
Category	Elective I	Year & Semester	I & I
Prerequisites	B.Sc Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

- > To appreciate the classification of microorganisms based on their structure, size and shape with an insight into the ancient scriptures about microbes.
- > To understand the role of microorganisms in environment and also tolearn the culture conditions.
- ➤ To recognize the possible contamination of foods by microorganisms, to learn about counteracting preservative measures. And to know about probiotics nature of microorganisms.
- ➤ To gain knowledge on pathogenic mediation by microorganisms and preventive measures as well.
- > To comprehend the features of antimicrobial agents, their mechanism of action along with the side effects and also to explorenatural remedial measures against microbes.
- ➤ To be able to exploit the various features of microorganisms for thebeneficial industrial production.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Taxonomical classification - bacteria, viruses (DNA, RNA), algae, fungi and protozoa. Distribution and role of microorganisms in soil, water and air. Charaka's classification of microbes, lytic cycle and lysogeny. Types of culture media, isolation of pure culture, growth curve and the measurement of microbial growth.	CO1 CO3	K1 K2 K3
UNIT-II	Contamination and spoilage of foods – cereals, cereal products, fruits, vegetables, meat, fish, poultry, eggs, milk and milk products. General principles of traditional and modern methods of food preservation - Removal or inactivation of microorganisms, boiling, steaming, curing, pasteurization, cold processing, freeze drying, irradiation, vacuum packing, control of oxygen and enzymes. Microbes involved in preparation of fermented foods - cheese, yoghurt, curd, pickles, rice pan cake, appam, ragi porridge and bread.	CO1 CO2 CO3	K1 K2 K3 K4

UNIT-III	Food poisoning- bacterial food poisoning, Salmonella, Clostridium blotulinum (botulism), Staphylococcus aureus, fungal food poisoning –aflatoxin, food infection – Clostridium, Staphylococcus and Salmonella. Pathogenic microorganisms, E. coli, Pseudomonas, Klebsilla, Streptococcus, Haemophilus, & Mycobacterium, causes, control, prevention, cure and safety. Food microbiological screening- Real time PCR, ELISA, Aerobic and anaerobic Plate Count, dye reduction method, anaerobic lactic acid bacteria, anaerobic spore formers, Hazard analysis critical control point (HACCP).	CO3 CO4	K1 K2 K3 K5
UNIT-IV	Antimicrobial chemotherapy, General characteristics of antimicrobial agents. Mechanism of action — sulfonamides, sulphones and PAS. Penicillin, streptomycin- spectra of activity, mode of administration, mode of action, adverse effects and sensitivity test., Antiviral and antiretroviral agents, Antiviral RNA interference, natural intervention (Natural immunomodulators routinely used in Indian medical philosophy).	CO2 CO3 CO4	K1 K2 K3 K5
UNIT-V	Immune system- definition and properties. Cells of the immune system – neutrophils, eosinophils, basophils, mast cells, monocytes, macrophages, dendritic cells, natural killer cells, and lymphocytes (B cells and T cells). Lymphoid organs- Primary and Secondary; structure and functions. Antigens and Complement System: definition, properties- antigenicity and immunogenicity, antigenic determinants and haptens. Antigen - antibody interactions - molecular mechanism of binding. Affinity, avidity, valency, cross reactivity and multivalent binding. Immunoglobulins & Immune Response: Structure, classes and distribution of antibodies, Transplantation immunology- graft rejection and HLA antigens. Immunological techniques, Flow cytometry and its application.	CO2 CO3 CO4 CO5	K1 K2 K3 K5 K6

- 1. Michael J.Pelczar Jr. (2001) Microbiology (5th ed), McGraw HillEducation (India) Private Limited.
- 2. Frazier WC, Westhoff DC, Vanitha NM (2010) Food Microbiology (5th ed), McGraw Hill Education (India) Private Limited.
- 3. Willey J and Sherwood L (2011), Prescott's Microbiology (8th ed)McGraw Hill Education (India)
- 4. Ananthanarayanan, Paniker and Arti Kapil (2013) Textbook of Microbiology (9th ed) Orient Black Swan.
- 5. Judy Owen, Jenni Punt Kuby (2013) ,Immunology (Kindt, Kuby Immunology) (7th ed) W. H. Freeman & Co.
- 6. Brooks GF and Carroll KC (2013) Jawetz Melnick & AdelbergsMedical Microbiology, (26th ed) McGraw Hill Education Greenwood D (2012) ,Medical Microbiology, Elsevier Health

Reference Text Books.

- 1. Michael J.Pelczar Jr. (2001) Microbiology (5th ed), McGraw HillEducation (India) Private Limited.
- 2. Frazier WC, Westhoff DC, Vanitha NM (2010) Food Microbiology (5th ed), McGraw Hill Education (India) Private Limited.
- 3. Willey J and Sherwood L (2011), Prescott's Microbiology (8th ed)McGraw Hill Education (India).
- 4. Ananthanarayanan, Paniker and Arti Kapil (2013) Textbook of Microbiology (9th ed) Orient BlackSwan.
- 5. Judy Owen, Jenni Punt Kuby (2013) ,Immunology (Kindt, Kuby Immunology) (7th ed) W. H. Freeman & Co.
- 6. Brooks GF and Carroll KC (2013) Jawetz Melnick & Adel bergs Medical Microbiology, (26th ed) McGraw Hill Education.
- 7. Greenwood D (2012), Medical Microbiology, Elsevier Health.
- 8. Richards Coico (2018) 8th edition, immunology-a short course, Wiley Black Well.
- 9. Abul.K.Abbass-10th edition 2019 –Cellular and molecular immunology.

Website and e-learning source

- 1. https://www.ijam.co.in/index.php/ijam/article/view/1326 (Krumi(Microorganisms) in Ayurveda- a critical review).
- 2. Virtual Lectures in Microbiology and Immunology, University of Rochester https://www.frontiersin.org/articles/10.3389/fphar.2020.578970/full#h9.
- 3. https://www.frontiersin.org/articles/10.3389/fmicb.2018.02151/full.
- 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559905/

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	To classify different types of microorganisms and explain life cycle of the microbes	K1, K2 & K5
CO2	To recognize the microorganisms involved in decay of foods.	K1, K2 & K4
CO3	To understand the common pathogenic bacterial and fungi	K1 & K2,K4
CO4	To analyze various features of wide variety of antimicrobial agents along with their mode of action	K2, K5 & K6
CO5	To apply knowledge gained in production of important immune components and transplantation immunology.	K2, K4 & K5

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	1	-	-	-	-	3	3	3
CO ₂	3	2	3	2	2	2	1	1	-	1	3	3	3
CO ₃	2	2	3	3	2	1	-	1	-	1	3	3	3
CO4	3	3	3	3	2	3	1	1	-	1	3	3	3
CO5	3	3	3	3	2	2	2	-	1	1	3	3	3

Title of the Course	ENERGY AND DRUG METABOLISM	Hours/Week	05
Course Code	APEBC15	Credits	03
Category	Core Elective I	Year & Semester	I & I
Prerequisites	B.Sc., Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

- Familiarize on concepts of enthalpy, entropy, free energy, redox system, biological oxidation and high energy compounds.
- > Provide an insight into the relationship between electron flow and phosphorylation.
- ➤ Inculcate knowledge on processes involved in converting light energy to chemical energy and associated food production by autotrophs.
- ➤ Provide a platform to understand the versatile role of Krebs cycle, transport of NADH across mitochondrial membrane and energetic.
- Educate on the various phases xenobiotic metabolism.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Thermodynamic- principles in biology- Concept of entropy, enthalpy and free energy change. Redox systems. Redox potential and calculation of free energy. Biological oxidation – Oxidases, dehydrogenases, hydroperoxidases, oxygenases. Energy rich compounds – phosphorylated and non-phosphorylated. High energy Linkages.	CO1 CO3	K1 K2 K3
UNIT-II	Electron transport chain-various complexes of ETC, Q-cycle. Inhibitors of ETC. Oxidative phosphorylation - P/O ratio, Chemiosmotic theory. Mechanism of ATP synthesis - role of F0-F1 ATPase, ATP-ADP cycle. Inhibitors of oxidative phosphorylation ionophores, protonophores. Regulation of oxidative Phosphorylation.	CO1 CO2 CO3	K1 K2 K3 K4
UNIT-III	Light reaction - Hills reaction, absorption of light, photochemical event. Photo ETC-cyclic and non-cyclic electron flow. Photo phosphorylation - role of CF0-CF1 ATPase. Dark reaction- Calvin cycle, control of C3 pathway, and Hatch-Slack pathway (C4 pathway), Photorespiration. Synthesis and degradation of starch.	CO3 CO4	K1 K2 K3 K5

UNIT-IV	Interconversion of major food stuffs. Energy sources of brain, muscle, liver, kidney and adipose tissue. Amphibolic nature of Citric acid cycle. Anaplerotic reaction. Krebs cycle, Inhibitors and regulation of TCA cycle. Transport of extra mitochondrial NADH – Glycerophosphate shuttle, malate - aspartate shuttle. Energetics of metabolic pathways – glycolysis, (aerobic and anaerobic), citric acid cycle, Beta-oxidation.	CO2 CO3 CO4	K1 K2 K3 K5
UNIT-V	Activation of sulphate ions – PAPS, APS, SAM and their biological role. Metabolism of xenobiotics – Phase I reactions – hydroxylation, oxidation and reduction. Phase II reactions – glucuronidation, sulphation, glutathione conjugation, acetylation and methylation. Mode of action and factors affecting the activities of xenobiotic enzymes.	CO2 CO3 CO4 CO5	K1 K2 K3 K5 K6

- David L.Nelson and Michael M.Cox (2012) Lehninger Principles of Biochemistry (6th ed), W.H.Freeman.
- 2. Robert K. Murray, Darryl K. Granner, Peter A. Mayes, and Victor W. Rodwell (2012), Harper's Illustrated Biochemistry, (29th ed), McGraw-Hill Medical.
- 3. Metzler D.E (2003). The chemical reactions of living cells (2nd ed), Academic Press.

Reference Text Books.

- 1. Zubay G.L (1999) Biochemistry, (4th ed), Mc Grew-Hill.
- 2. Devlin RM (1983) Plant Physiology (4th ed), PWS publishers
- 3. Taiz L, Zeiger E (2010), Plant Physiology (5th ed), Sinauer Associates, Inc

Website and e-learning source

- 1. https://chemed.chem.purdue.edu/genchem/topicreview/bp/ch21/gibb s.php
- 2.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767752/#:~:text=T he%20mitochondrial%20electron%20transport%20chain,cellular%2 0ATP%20through%20oxidative%20phosphorylation.
- 3. https://www.researchgate.net/figure/Oxidative-phosphorylation-in-mitochondrial-electron-transport-chain-ETC-and- proton_fig1_230798915
- 4. https://www.lyndhurstschools.net/userfiles/84/Classes/851/photosynt hesis%20light%20&%20dark%20reactions%20ppt.pdf?id=560837
- $5. https://bajan.files.wordpress.com/2010/05/amphibolic-nature-of-\ krebs-cycle.pdf$
- 6. https://www.sciencedirect.com/topics/medicine-and-dentistry/xenobiotic-metabolism#:~:text=Xenobiotic%20metabolism%20can%20be%20defined,more%20readily%20excreted%20hydrop

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Appreciate the relationship between free energy and redox potential.	K1,K2,K3,K4
CO2	Gain knowledge on role of mitochondria in the production of energy currency of the cell.	K1, K2, K5,
CO3	Acquaint with the process of photosynthesis.	K1,K2,K4,K5
CO4	Comprehend on the diverse role of TCA cycle and the energy obtained on complete oxidation of glucose and fatty acid.	K2, K5
CO5	Correlate the avenues available to metabolize the xenobiotics.	K1, K2,K4,K5

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	3	3	3	-	-	-	-	-	3	3	3
CO2	3	2	3	3	2	-	1	1	-	1	3	3	3
CO3	3	2	3	3	3	-	-	2	-	1	2	2	3
CO4	3	1	3	1	2	1	1	-	-	-	3	2	3
CO5	3	2	2	2	2	2	2	-	1	1	3	2	3

Title of the Course	ENZYMOLOGY	Hours/Week	6
Course Code	APCBC21	Credits	5
Category	CORE -IV	Year & Semester	I & II
Prerequisites	B.Sc Biochemistry/ Chemistry/ Microbiology/ Plant Biotechnology	Regulation	2024

- ❖ Students will be introduced to the theory and practice of enzymology.
- ❖ Mechanisms of catalysis and factors affecting catalysis will be understood
- The kinetics of enzyme catalyzed reactions in the absence and presence of inhibitors will be studied and the options for applying enzymes and their inhibitors in medicine will be analyzed.
- ❖ Students will learn about the applications of enzymes in research, medicine, and industry, which will prepare them for careers in industrial and biomedical research.
- The control of metabolic pathways and cellular responses through enzyme regulation will be emphasized.

UNIT-I	UNIT-I Introduction to enzymes and features of catalysis: A short history of the Discovery of enzymes and how they became powerful biochemical tools. Holo enzyme, apo enzyme, cofactors, coenzyme, prosthetic groups. Classification and Nomenclature, Enzyme Specificity - group specificity, absolute specificity, substrate specificity, stereo chemical specificity. Active site, Identification of amino acids at the active site-trapping of ES complex, identification using chemical modification of amino acid side chains and by site-directed mutagenesis .Mechanisms of enzyme catalysis: acid-base catalysis, covalent catalysis, electrostatic catalysis, metal ion catalysis, proximity and orientation effects.	CO1	K1,K2, K5
--------	--	-----	-----------

UNIT-II	Enzyme techniques: Isolation and purification of enzymes –Importance of enzyme purification, methods of purification- choice of source, extraction, fractionation methods-based on size or mass(centrifugation, gel filtration); based on polarity (ion-exchange chromatography, electrophoresis, isoelectric focusing, hydrophobic interaction chromatography); based on solubility (change in pH, change in ionic strength); based on specific binding sites (affinity chromatography), choice of methods, Criteria of purity of enzymes. Enzyme units - Katal, IU. Measurement of enzyme activity - discontinuous, continuous, coupled assays; stopped flow method and its applications. Isoenzymes and their separation by electrophoresis with special reference to LDH.		K1,K2, K3,K4, K5
UNIT-III	Enzyme kinetics I: Activation energy, transition-state theory, steady-state kinetics & pre-steady-state kinetics. Single substrate enzyme catalyzed reactions-assumptions, Michaelis-Menten, derivation of Michaelis-Menten equation Double reciprocal (Line weaver-Burk) and single reciprocal (Eadie -Hofstee) linear plots, their advantages and limitations. Analysis of kinetic data- determination of Km, Vmax, kcat, and their physiological significance, Importance of kcat/Km. Enzyme inhibition: Irreversible inhibition. Reversible inhibition-Competitive, uncompetitive, noncompetitive with kinetics. Therapeutic use of enzyme inhibitors-Aspirin, statins (irreversible inhibitors), Methotrexate (competitive inhibitor), Etoposide (non-competitive inhibitor), camptothecin (uncompetitive inhibitor).	CO3	K1, K2, K3, K4
UNIT-IV	Enzyme kinetics II: Allosteric enzymes: Cooperatively, MWC and KNF models of allosteric enzymes, Sigmoidal kinetics taking ATC ase as an example. Regulation of amount and catalytic activity by - extracellular signal, transcription, stability of mRNA, Rate of translation and degradation, compartmentation, pH, temperature, substrate concentration, allosteric effectors, covalent modification. Regulation of glycogen synthase and glycogen phosphorylase. Feedback inhibition- sequential, concerted, cumulative, enzyme-multiplicity with examples. Bi - Substrate reactions: Single Displacement reactions (SDR) (Ordered and Random bi bi mechanisms), Double Displacement reactions (DDR) (Ping pong mechanism), Examples, Cleland's representation of bisubstrate reactions, Graphical analysis (diagnostic plots) to differentiate SDR from DDR.	CO4	K1, K2, K5, K6

UNIT-V	Enzyme technology: Immobilization of enzymes — methods—Reversible immobilization (Adsorption, Affinity binding), Irreversible Immobilization (Covalent coupling, Entrapment and Microencapsulation, Cross linking, Advantages and Disadvantages of each method, Properties of immobilized enzymes. Designer enzymes ribozymes and deoxyribozymes, abzymes, synzymes. Enzymes as therapeutic agents-therapeutic use of asparaginase and streptokinase. Application of enzymes in industry- Industrial application of rennin, lipases, lactases, invertase, pectinases, papain.	CO5	K1,K2 & K3
--------	---	-----	------------

- 1. Voet's Biochemistry, Adapted edi, 2011, Voet, D and Voet JG; Wiley, India
- 2. Lehninger Principles of Biochemistry, 8th edition, 2021, .Nelson DLand Cox MM; WH Freeman & Co, New York
 - 3. Biochemistry, Berg JM, Stryer L, Gatto, G, 8th ed, 2015; WH Freeman & Co., New York.
 - 4. Concepts in Enzymology, R.Katoch, Kalyani publishers January 2013.

Reference Books

- 1. Enzymology by T.Devasena, Oxford University press, November 2010. ISBN13-978- 0198064435
- **2.** Understanding Enzymes: An Introductory Text (Muticolour) Paperback 1 January 2018 by Dr. Aditya Arya (Author, Illustrator), Dr. Amit Kumar (Author), Jayanti Jha (Author)
- **3.** Laboratory guide to Enzymology, by Geoffrey A. Holdgate (Author), Antonia Turberville (Author), Alice Lanne (Author), 1st Edition, March 2024. ISBN-13 978-1394179794

Website and e-learning source

- **1.** Enzymes | MIT Open Course Ware | Free Online Course Materials https://ocw.mit.edu/high-school/biology/exam-prep/chemistry-oflife/enzymes/
- **2.** Enzymology https://onlinecourses.swayam2.ac.in/cec20_bt20/preview https://mooc.es/course/enzymology/
- **3.** The active site of enzymes https://dth.ac.in/medical/courses/biochemistry/block-1/1/index.php
- 4. Enzymes and Enzyme Kinetics
 https://www.lecturio.com/medical-courses/enzymes-and-enzyme kinetics.course#/
 Mechanistic enzymology in drug discovery: a fresh perspective
 https://www.nature.com/articles/nrd.2017.219
 Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding
 Analytical Performances in Biological Fluids
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934206/

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Describe the catalytic mechanisms employed by enzymes	K1,K2 & K5
CO2	Choose and use the appropriate methods to isolate and purify enzymes and check the purity of the enzyme.	K1,K2 , K3,K4 &K5
CO3	Analyze enzyme kinetic data graphically, calculate kinetic parameters, determine the mechanism of inhibition by a drug/chemical.	K1, K2, K3 &K4
CO4	Explain allosterism and co operativity and differentiate Michaelis- Menten kinetics from sigmoidal kinetics.	K1, K2 , K5, K6
CO5	Highlight the use of enzymes in industries and biomedicine.	K1,K2 & K3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	-	2	-	2	-	-	1	-	3	2	1
CO2	3	1	-	1	-	2	-	1	-	1	3	2	=
CO3	3	3	-	3	-	3	2	3	-	-	3	1	1
CO4	3	2	1	2	-	2	1	1	-	2	1	1	2
CO5	3	3	2	3	2	3	2	2	-	-	3	2	2

Title of the Course	CELLULAR METABOLISM	Hours/Week	6
Course Code	APCBC 22	Credits	5
Category	CORE -V	Year & Semester	I & II
Prerequisites	B.Sc Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

- ❖ Familiarize on blood glucose homeostasis.
- Provide an insight into the metabolic path way of glycogen, glycoprotein, mucopolysaccharide and peptidoglycan with clinical correlation wherever required.
- ❖ Inculcate knowledge on nucleotide metabolism and disorders associated with it
- ❖ Provide a platform to understand the versatile role of PLP in amino acid degradation, formation of specialized products and disorders associated with ammonia detoxification
- **&** Educate on heme and sulphur metabolism with associated clinical manifestation.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Glycolysis – aerobic and anaerobic, inhibitors, and regulation. Galactosemia, fructosuria, Pyruvate dehydrogenase complex mechanism and regulation. Glyoxalate cycle and its regulation. Gluconeogenesis- source, key enzymes, reaction sequence and its regulation. Pentose phosphate pathway significance and its regulation. Metabolism of glycogen – glycogenesis and Glycogenolysis – its regulation.	CO1	K1,K2,K5
UNIT-II	Oxidation of fatty acids-oxidation of saturated and unsaturated fattyacids (α , β & ω oxidation). Regulation of β oxidation. Ketogenesis and its regulation. Biosynthesis of fatty acid-saturated and unsaturated, chain elongation, regulation. Biosynthesis of prostaglandins, thromboxanes and leukotrienes. Biosynthesis and degradation of triacylglycerol, phosphoglycerolipids-lecithin, cephalin, plasmalogens and phosphatidyl inositol, Sphingolipid-sphingomyelin, cerebrosides, sulfatides, and gangliosides. Cholesterol biosynthesis and its regulation. Lipoprotein metabolism-chylomicrons, VLDL, HDL and LDL.	CO2	K1, K2, K5
UNIT-III	Metabolism of nucleotides- <i>De novo</i> synthesis and salvage pathways of purine and pyrimidine nucleotides. Regulation and inhibitors of nucleotide biosynthesis. Role of ribonucleotide reductase and its regulation. Degradation of purine and pyrimidine nucleotides.		K1,K2,K4

VI-TINU	Biosynthesis of non- essential amino acids- Role and biological significance of glutamate dehydrogenase, glutamine and asparagine synthetase, lysine, proline and phenylalanine hydroxylase. Interconversion of amino acids- proline to glutamate, methionine to cysteine, serine to glycine. Biosynthesis of spermine and spermidine. Degradation of amino acids –glucogenic and ketogenic amino acids. Formation of acetate from leucine and aromatic amino acid, pyruvate from cysteine, threonine and hydroxy proline, α-ketoglutarate from histidine and proline, succinate from methionine, threonine, valine and isoleucine, Oxaloacetate from aspartate, glycine and serine.	CO4	K1,K2,K4
UNIT-V	Biosynthesis and degradation of heme. Jaundice-classification, pathology and Differential diagnosis. Oxidation and reduction of inorganic sulphur compounds by microbes and plants. Sulphotransferases and their biological role-rhodanases, sulphatases, 3-mercapto pyruvate sulphur transferases. Mucopolysaccharidoses - Hunter syndrome, Sanfilippo syndrome and Maroteaux-Lamy syndrome. Oxidation of cysteine to sulphate and inter conversion of sulphur compounds.	CO5	K1,K2, K4, K5

- 1. David L.Nelson and Michael M.Cox (2012) Lehninger Principles of Biochemistry (6th ed), W.H.Freeman
 - 2. Voet.D and Voet. J.G (2010) Biochemistry, (4th ed), John Wiley &Sons, Inc.
 - 3. Zubay G.L (1999) Biochemistry, (4th ed), Mc Grew-Hill.
- 4. Textbook of Biochemistry with Clinical Correlations, 7th Edition, Thomas M. Devlin (Editor), Wiley Publication(2010).
- 5. Human Biochemistry James M.Orten & Otto.W.Neuhan- 10th edn- The C.V.Mosby Company(2020).

Reference Books

- 1. Donald Voet, J.G. Voet, John Wiley, Biochemistry", 4th edition, 2010.
- 2.Davidson & Sittman, —Biochemistry NM., 3rd edition", Lippincott. Willams and Wilkins, 2005
 - 3. Harper's Illustrated Biochemistry by Robert K. Murray, Mc Graw Hill Publishers.
 - 4.Enzyme Regulation in metabolic pathways by Lioyd wolfinvarger ,Wiley Publication,2017.

Website and e-learning source

- 1. Glycolysis: https://www.embopress.org/doi/full/10.1038/msb.2013.19
- 2. Glycogen metabolism: https://people.wou.edu/~guralnl/450Glycogen%20metabolism.pdf
- 3. Urea cycle: https://www.researchgate.net/publication/334458898_Urea_Cycle
- 4. Hemebiosynthesis:

https://www.researchgate.net/publication/51233381_Heme_biosynthesis_and_its_regulation_Towards_understanding_and_improvement_ofheme_biosynthesis_in_filamentous_fungi

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Appreciate the modes of synthesis and degradation of glucose and will be able to justify the pros and cons of maintain the blood sugar level	K1, K2, K5
CO2	Gain knowledge on polysaccharide metabolism and glycogen storage disease	K1, K2, K5
CO3	Acquaint with the making and breaking of nucleotides	K1,K2,K4
	Differentiate the diverse reaction a particular amino acid can experience	K1,K2,K3
CO5	Correlate the disturbance of metabolic reactions to clinical manifestations with reference to heme and sulphur metabolism	K1,K2, K4, K5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	1	2	3	3	3	3	1	-	3	3	2
CO ₂	3	3	2	2	1	2	2	3	-	1	2	3	-
CO ₃	3	-	-	1	-	2	2	-	-	-	-	3	-
CO4	2	1	-	1	-	2	-	-	-	1	3	3	3
CO5	3	2	-	3	2	3	3	3	-	-	2	3	3

Title of the Course	PRACTICAL II: ENZYMOLOGY, MICROBIOLOGY AND CELL BIOLOGY	Hours/Week	6
Course Code	APCPBC 23	Credits	4
Category	CORE-VI	Year & Semester	I & II
Prerequisites	B.Sc Biochemistry/Chemistry/Microbiology/Plant Biotechnology	Regulation	2024

- To inculcate skill in students enabling them to apprehend the wider knowledge about principles and techniques to be employed for the assay of enzymes under investigation.
- To inculcate the knowledge of isolation and purification techniques of enzymes using alkaline phosphatase as an example.
- ❖ To perform experiments to study the factors affecting enzyme activity.
- ❖ To achieve training in assay of enzymes.
- ❖ To achieve training in basic microbiological techniques preparation of culture, sterilization and staining methods.
- To perform the blood grouping test and to prepare blood smear to study different types of blood cells.
- ❖ To learn molecular biology techniques like Gel electrophoresis and Blotting techniques.
- To introduce industrial visit so that students may be aware of actual need of the industry and various opportunities available.

UNITS	Contents	COs	Cognitive Levels
UNIT- I	Enzymology Alkaline Phosphatase a. Isolation of Alkaline Phophatase from goat kidney. b. Determination of optimum pH and temperature of alkaline phosphatase. c. Determination of specific activity and Km of alkaline phosphatase. d. Effect of activators and inhibitors on the activity of alkaline phosphatase. Assay of enzymes a. Salivary Amylase b. Acid Phosphatase	CO1	K1,K2, K4, K5

	Microbiology a. Safety measures and Good Laboratory Practices in microbiology laboratory b. Sterilization, Culture and inoculums preparation c. Staining of bacteria – Gram Staining	CO2	K1,K2,K4
UNIT-III	Physiology & Cell Biology a. Test for blood grouping (Haem agglutination). b. Peripheral Blood smear –Staining and Interpretation	CO3	K1,K3,K4
>	Group Experiments a. Separation of proteins based on molecular weight by SDS PAGE b. Agarose gel electrophoresis of genomic DNA	CO4	K1,K3,K4 & K6
>	Industrial visit can be organized to students through Academia – Industry. Collaborative Program.	CO5	K1,K2, K3,K4 & K6

- 1. David Plummer (2019) An Introduction to Practical Biochemistry(3rd edi)
- McGraw HillEducation (India) Private Ltd
 - 2. Jayaraman, J (2011), laboratory Manual in Biochemistry, New age Publishers.
 - 3. Fundamentals of Enzymology; 3rd Edition. Nicholas C. Price and Lewis Stevens, OxfordUniversity Press (2012).
 - 4. Cappuccino JG & Sherman N (2005). Microbiology-A Laboratory Manual, PearsonEducation Inc
- 5. Practical Enzymology, Second Revised Edition: Hans Bisswanger, Wiley Blackwell; 2 edition(2011)

Reference Books

- 1. H. Varley. Practical Clinical Biochemistry, 6th Edition, CBS Publishers, 2022.
- 2. Practical Biochemistry For Medical Students Raghu, JAYPEE, 2006
- 3. Practical Clinical Biochemistry Hard cover–Harold Varley, Sixth Edition, Alan H Gowen lock.
- 4. Practical Biochemistry by Keith Wilson and John walker.

Website and e-learning source

1. Kinetic_studies:

https://www.researchgate.net/publication/337146254_Kinetic_studies_with_alkaline_phosphatase

- 2. Periheral_smear: https://www.researchgate.net/publication/349318898_ABC_of_ Periheral_smear
- 3. Lab safety: https://ncdc.gov.in/WriteReadData/1892s/File608.pdf.
- 4. Gram staining: https://www.ncbi.nlm.nih.gov/books/NBK562156/

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	The student will be able to employ the relevant techniques for isolation and purification of enzymes.	K1,K2, K4
CO2	Student will acquire ability in performing enzyme assay, and explicate the methods that form the basis of enzyme characterization.	K1,K2,K4
CO3	Learn the Basic concepts in Blood grouping and smear preparation.	K1,K3,K4
CO4	Students will be trained in separation techniques used in molecular Biology which will be supportive in their future research	K1,K3,K4 & K6
CO5	Industrial visits will provide the students with an opportunity to learn practically through interaction.	K1,K2,K3,K4 & K6

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	3	3	2	1	-	3	2	3
CO2	3	2	1	1	3	3	3	2	-	1	3	3	3
CO ₃	2	2	1	1	2	3	3	2	2	-	3	2	2
CO4	3	2	1	1	2	3	3	2	-	1	3	3	3
CO5	3	3	1	3	3	3	3	2	1	-	3	3	2

Title of the Course	BIOSTATISTICS & DATA SCIENCE	Hours/Week	3
Course Code	APEBC 24	Credits	3
Category	ELECTIVE –III	Year & Semester	I & II
	B.Sc Biochemistry/ Chemistry/ Microbiology/ Plant Biotechnology	Regulation	2024

- To summarize the data and to obtain its salient features from the vast mass of original data.
- ❖ To understand the concept of various measures of dispersion.
- ❖ To understand the concepts of sampling and learning test of significance.
- ❖ To understand the concept of various attributes and relate to biological studies.
- ❖ To gain knowledge in SPSS, a software package which gives a perfect graphical representation and appropriate result for the data that has been entered.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Nature of biological and clinical experiments – Collection of data in experiment- Primary and secondary data. Methods of data collection. Classification and tabulation. Different forms of diagrams and graphs related to biological studies. Measures of Averages- Mean, Median, and mode. Use of these measures in biological studies.	CO1	K1,K2,K3
UNIT-II	Measures of Dispersion for biological characters — Quartile deviation, Mean deviation, Standard deviation and coefficient of variation. Measures of skewness and kurtosis. Correlation and regression — Rank correlation — Regression equation. Simple problems based on biochemical data.	CO2	K1,K2,K3
UNIT-III	Basic concepts of sampling- Simple random sample stratified sample and systemic sampling. Sampling distribution and standard error. Test of significance based on large samples. Test for mean, difference of means, proportions and equality of proportions.	CO3	K1,K2,K3,K4
UNIT-IV	Small sample tests – Students 't' test for mean, difference of twoway means, tests for correlation and regression coefficients. Chisquare test for goodness of a non independence of attributes. F test for equality of variances. ANOVA- one way and two ways. Basic concept related to biological studies	CO4	K1,K2,K3,K4

V-TINI		
L L L	\sim	
L L L		
Z	´ .	
Z		
Z	ì	
	7	
;)	\Box	

Definition to Data Science, Algorithms - Machine Learning Deep Learning, Artificial Neural Networks, Artificial Intelligence (AI), Big Data and their Application in medical, health and pharma industries.

CO5

K1,K2,K3,K4, K6

Recommended Text Books

- 1. Basics of Biostatistics by A.P. Kalkarani 2 nd edition (pb 2020)
- 2. Warren, J; Gregory, E; Grant, R (2004), "Statistical Methods in Bioinformatics", 1st edition, Springer
- 3. Introduction to biostatistics Dr. Pranab kr. banerjee,4 th edition,2011

Reference Books

- 1. A Text book of Biostatistics by Annadurai pillai 1st edition,2007
- 2. Rosner, B (2005), "Fundamentals of Biostatistics", Duxbury Press
- 3. Introducing Data Science, Davy Cielen, Anro DB Meysman, Mohamed Ali,2016

Website and e-learning source

- 1. Statistics: https://www.ibm.com/docs/en/SSLVMB_28.0.0/pdf/Accessibility.pdf
- 2. Statistical methods for bioassay: https://pure.tue.nl/ws/portalfiles/portal/19478370/20160419_CO_Mzolo.pdf
- 3. Data analysis: https://students.shu.ac.uk/lits/it/documents/pdf/analysing_data_using_s pss.pdf
- 4. Data documentation: https://www.ibm.com/support/pages/ibm-spss-statistics-28- documentation

Course Learning Outcomes (for Mapping with POs and PSOs)

COs	CO Description	Cognitive Level
CO1	Concepts of statistical population and sample, variables and attributes. Tabular and graphical representation of data based on variables.	K1,K2,K3
CO2	Conditions for the consistency and criteria for the independence of data based on attributes.	K1,K2,K3
CO3	Learning different sampling methods and analyzing statistical significance.	K1,K2,K3,K4
CO4	Understanding students t test, ANOVA, Chi square test to analyze the significance of various research.	K1,K2,K3,K4
CO5	Learning on data science, artificial intelligence and big data, their applications in pharma domain.	K1,K2,K3,K4.K6

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	3	3	2	-	-	3	1	1
CO ₂	2	2	2	2	2	3	3	2	-	-	3	1	1
CO ₃	2	3	2	3	2	3	3	2	-	-	3	1	1
CO4	3	3	2	3	2	3	3	1	-	-	3	2	1
CO5	3	2	2	3	2	3	3	1	-	-	3	2	1

Title of the Course	BIOSAFETY, LAB SAFETY AND IPR	Hours/Week	3
Course Code	APEBC 25	Credits	3
Category	ELECTIVE-IV	Year & Semester	I & II
Prerequisites	B.Sc Biochemistry/ Chemistry/ Microbiology/ Plant Biotechnology.	Regulation	2024

- To assimilate the hazards associated with the handling of biological and chemical agents.
- ❖ To understand how to protect from the hazards by the implementation of various safety measures in biochemical laboratories.
- To implicate the importance of protecting the scientific intellect by filing patent and understand the various offices for filing and maintaining patents
- To understand the scope of patenting in biological research.
- To create an awareness of ethics associated with used of genetically modified organisms/cells and its rationale for use in living organisms.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Biosafety: Historical background; introduction to biological safety cabinets; primary containment for biohazards; Biosafety levels; recommended Biosafety levels for infectious agents and infected animals; Biosafety guidelines - government of India, roles of IBSC, RCGM, GEAC etc. for GMO applications in food and agriculture; environmental release of GMOs; risk assessment; risk management and communication; national regulations and international agreements.	CO1	K1,K2, K3,K4
UNIT-II	Laboratory safety - Chemical, electrical and fire hazards; handling and manipulating human or animal cells and tissues, toxic, corrosive or mutagenic solvents and reagents; mouth pipetting, and inhalation exposures to infectious aerosols, Safe handling of syringe needles or other contaminated sharps, spills and splashes onto skin and mucous membranes. Health aspects; toxicology, allergenicity, antibiotic resistance. Good lab practice (GLP). History of Biosafety microbiology and molecular biology, Risk assessment, Personal protective equipment, Laboratory facilities and safety equipment, Disinfection, decontamination, and sterilization, Regulatory compliance, Laboratory security and emergency response and administrative controls.	CO2	K1,K2,K3

UNIT-III	Intellectual Property Rights (IPR): Introduction to patents, types of patents, process involved in patenting in India, trademarks, copyright, industrial design, trade secrets, traditional knowledge, geographical indications, history of national and international treaties and conventions on patents, WTO, GATT, WIPO, Budapest Treaty, Patent Cooperation Treaty (PCT) and TRIPS. Patent databases: Searching international databases; analysis and report formation. Indian Patent Act 1970; recent amendments; filing of a patent application; precautions before patenting disclosure/non-disclosure; procedure for filing a PCT application. The patentability of microorganisms-claims, Characterization and repeatability disposition in the culture collections, legal protection for plants and other higher organisms, new plant varieties by rights, tissue culture protocols.	CO3	K1,K2,K3
UNIT-IV	Patent filing and infringement: Patent application- forms and guidelines, fee structure, time frames; types of patent applications: provisional and complete specifications; PCT and convention patent applications, International patenting-requirement, financial assistance for patenting- introduction to existing schemes; Publication of patents-gazette of India. Research Patenting: Patenting by researchers and scientists- University/organizational rules in India and abroad. Detailed information on patenting biological products, Case studies on Indian patents (basmati rice, turmeric, neem etc.), and patent infringement.	CO4	K1,K2, K3, K4
UNIT-V	Bioethics: Introduction to bioethics, human genome project and its ethical issues, genetic manipulations and their ethical issues, ethical issues in GMOs, foods and crops in developed and developing countries, environmental release of GMOs, ethical issues involved in stem cell research and use, use of animals in research experiments. CPCSEA guidelines.	C05	K1,K2, K4,K5

- 1. Biosafety in Microbiological and Biomedical Laboratories, (2020) 6thEd. (https://www.cdc.gov/labs/pdf/SF_19_308133-A_BMBL6_00-BOOK-WEB-final3.pdf)
- 2. Kankanala C., (2007), Genetic Patent Law & Strategy, 1st Edition, Manupatra Information Solution Pvt. Ltd.,

Reference Books

- 1. Deepa Goel, Shomini Parashar, (2013). IPR, Biosafety and Bioethics, Pearson. (Unit II)
- 2. R. Ian Freshney, 2016. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th Ed, John Wiley & Blackwell.
- 3. BAREACT, Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt. Ltd., 2007. (Unit I)
- 4. Bioethics and biosafety in biotechnology by V.Sree Krishna, Edition 1,2017

Website and e-learning source

- 1. Biosafety tools:https://www.cdc.gov/safelabs/resources-tools/biosafety-resources-and-tools.html
- 2. Lab safety: https://ehs.washington.edu/research-lab/laboratory-safety
- 3. Biosafety levels: https://www.cdc.gov/labsafety/index.html
- **4.** Introduction to lab safety: https://www.ncbionetwork.org/iet/labsafety/

Course Learning Outcomes (for Mapping with POs and PSOs)

COs	CO Description	Cognitive Level
CO1	Understand and implement various aspects of Biosafety and carry out risk assessment of products in biological research	K1,K2,K3,K4
CO2	Understand the basic concepts of laboratory safety, safe handling of hazardous chemicals and emergency response.	K1,K2,K3
CO3	Appreciate the intellectual property rights and its implementation of on the invention related to biological research.	K1,K2,K3
CO4	Understand the statutory bodies that regulate the property rights and its validity in various countries.	K1,K2,K3K4
CO5	Critique the ethical concerns associated with modern biotechnology processes and plans accordingly.	K1,K2,K4,K5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	2	3	2	3	3	2	1	-	1	1	1
CO ₂	3	3	3	3	2	3	3	2	2	-	1	2	1
CO ₃	2	2	2	2	2	2	2	2	-	1	1	1	1
CO4	2	2	3	2	2	3	2	2	-	-	1	1	1
CO5	3	3	3	3	2	2	3	2	-	1	1	1	1

Title of the Course	NUTRITIONAL BIOCHEMISTRY	Hours/Week	4
Course Code	APSBC 26	Credits	2
Category	Skill Enhancement Course [SEC] - I	Year & Semester	I & II
Prerequisites	B.Sc Biochemistry/ Chemistry/ Microbiology/ Plant Biotechnology.	Regulation	2024

- To understand basic concepts involved in growth, health, nutrition, physiology and metrics
- ❖ To discuss the concepts and applications of nutrition in correlation with biochemistry.
- To define nutritional needs in healthy individuals and modification of diet during illness.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Basic concepts - Nutrition - Food groups and balanced diet. Novel Foods. Calorific value of foods: Direct and indirect calorimeter. Empty calories. Basal metabolic rate: Factors affecting BMR. SDA and physical activity. Calculation of daily energy requirement. Assessment of nutritional status. Lactose intolerance. Nutritional requirement and biochemical changes in different physiological states -infancy, childhood, pregnancy, lactation, and ageing. Sports nutrition.	CO1	K3, K4, K5
UNIT-II	Elements of nutrition - Plant and animal sources of simple and complex carbohydrates, fats and proteins and their requirement. Biological significance, deficiency and toxicity of macronutrients and micronutrients. Role of dietary fiber. Protein sparing action of carbohydrates and fats. Essential amino acids. Essential fatty acids. Effects of naturally occurring food toxins, preservatives, additives, alcohol and tobacco on health.	CO2	K1 to K6
UNIT-III	Vitamins and Minerals- Dietary sources, classification, biochemical functions, requirements, absorption, metabolism and excretion. Vitamin B complex as coenzyme. Nutritional significance of dietary calcium, phosphorus, magnesium, iron, iodine, zinc and copper.	CO3	K1 to K6

UNIT-IV	Malnutrition - Diseases arising due to Protein - Calorie Malnutrition and undernutrition (Kwashiorkor and Marasmus), Prevention of malnutrition. Deficiency diseases associated with vitamin B complex,vitamin C and A, D, E & K vitamins - Mineral deficiency diseases - aetiology, sign and symptoms and dietary supplementation. Enrichment and fortification (vitamins and minerals)	CO4	K3,K4
UNIT-V	Nutrition in diseases - Aetiology, signs and symptoms, treatment and dietary management during fever(Typhoid and Malaria) and infectious diseases(COVID-19), Jaundice, Liver toxicity, hyper acidity (Ulcer), Atherosclerosis, Hypertension, kidney diseases and diabetes in adults. Starvation and Obesity. Inter-relationship of nutrition, infection, immunity and poverty.	CO5	K5,K6

- 1. Srilakshmi. E (2016) Nutrition Science, New Age International Publishers.
- 2. Mahan, Kathleen L. (2004) Krause's Food, Nutrition and Diet

TherapyW.B.Saunder's11thEdition

- 3. Andreas M. Papas (1998). Antioxidant Status, Diet, Nutrition, and Health (1st ed) CRC Press.4. Modern Nutrition by Catharineross, Woiters Kiuwe publishers.
- 5. Complete food and Nutrition Guide By Robert Larson duyff ,John and Willy Publishers.

Reference Books

- 1. M. Swaminathan (1995) Principles of Nutrition and Dietetics.
- 2. Margaret Mc Williams (2012). Food Fundamentals (10th ed) Prentice Hall
- 3. Dr. S. Mohana sundaram ,Edition 1,2024.
- 4. USA4.Nutritional Biochemistry By chadcox, CRC Press Publishers
- 5. Nutritional Biochemistry by Sharma. D.C,2017.
- 6. Textbook of Human Nutrition Paperback by Ph.d. Anjana Agarwal, 2nd edition, January 2022

Website and e-learning source

1. Nutritional biochemistry:

https://www.sciencedirect.com>book>nutritional-bioch.3.

2.Healthy diet:

https://www.ncbi.nlm.nih.gov>books>NBK554545

Course Learning Outcomes (for Mapping with POs and PSOs)

COs	CO Description	Cognitive Level
CO1	Plan a balanced diet based on an individual's energy requirement, Assess nutritional status of an individual	K3, K4, K5
CO2	Describe the biochemical, physiological and nutritional functions of macronutrients and their integrated role.	K1 to K6
CO3	Evaluate the functions of vitamins and minerals, and fluids and electrolyte balance in different physiological states and in sports persons.	K1 to K6
CO4	Identify nutritional deficiency conditions, its prevention and dietary management	K3,K4
CO5	Acquire knowledge about the importance of balanced diet and diet therapy	K3,K4

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	3	3	3	1	-	2	3	2
CO ₂	2	3	2	2	3	3	3	3	1	1	1	3	3
CO3	3	3	1	2	3	3	3	3	1	-	2	3	3
CO4	3	3	1	2	3	3	3	3	-	1	2	3	2
CO5	2	3	1	3	3	3	3	3	1	-	2	3	2

Title of the Course	PHYSIOLOGY AND CELL BIOLOGY	Hours/Week	06
Course Code	APCBC31	Credits	05
Category	CORE PAPER -VII	Year & Semester	II & III
Prerequisites	B.Sc Biochemistry/ Chemistry/ Microbiology/ Plant Biotechnology	Regulation	2024-2025

- 1. To understand the functions and activities of organs, tissues or cells and of physical and chemical phenomena involved in the human body.
- 2. To understand the structures and purposes of basic components of prokaryotic and eukaryotic cells.
- 3. To understand cellular components are used to generate and utilize energy in cells.
- 4. To use their knowledge of physiology to analyze and solve clinical problems.
- 5. To integrate knowledge from physiology, anatomy, and biochemistry.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Major classes of cell junctions- anchoring, tight and gap junctions. Major families of cell adhesion molecules (CAMs) - cadherins, integrins. Types of tissues. Epithelium- organization and types. The basement membrane. Cell cycle- mitosis and meiosis, Cell cycle-phases and regulation. Cell death mechanisms- an overview-apoptosis, necrosis.	CO1	K1, K2, K4,K5,
UNIT-II	Reproductive system- Sexual differentiation and development; sperm transport, Sperm capacitation, Semen analyses and Acrosome reaction. Clinical relevance of female reproductive physiology- menstrual cycle, pregnancy and menopause. Fertilization and infertility issues.	CO2	K1,K2, K3, K4, K5
UNIT-III	Digestive system- structure and functions of different components of digestive system, digestion and absorption of carbohydrates, lipids and proteins, role of bile salts in digestion and absorption, mechanism of HCl formation in stomach, role of various enzymes and hormones involved in digestive system. Composition of blood, lymph and CSF. Blood cells - WBC, RBC and energy metabolism of RBC, Blood clotting mechanism and blood groups- ABO and Rhesus system.		K1, K2, K3, K4, K5

UNIT-IV	Respiratory system-Gaseous transport and acid-base homeostasis. Mechanism of the movement of O2 and CO2 through lungs, arterial and venous circulation. Bohr effect, oxygen and carbon dioxide binding hemoglobin. pH maintenance by cellular and intracellular proteins. Phosphate and bicarbonate buffers, Metabolic acidosis and alkalosis. Respiratory acidosis and alkalosis. Regulation of fluid and electrolyte balance.	CO4	K1, K2, K3, K4, K5
UNIT-V	Sensory transduction, Nerve impulse transmission- nerve cells, synapses, reflex arc structure, resting membrane potential, Nernst equation, action potential, voltage gated ion-channels, impulse transmission, neurotransmission, neurotransmitter receptors, synaptosomes, synaptotagmin, rod and cone cells in the retina, changes in the visual cycle, photochemical reaction and regulation of rhodopsin, odour receptors, learning and memory. Hormones – Classification, Biosynthesis, circulation in blood, modification and degradation. Mechanism of hormone action, Target cell concept. Hormones of Hypothalamus, pituitary, Pancreatic, thyroid & parathyroid, adrenal and gonadal hormones. Synthesis, secretion, physiological actions and feedback regulation of synthesis.	CO5	K1, K2, K5

- 1. Karp, G. Cell and Molecular Biology: Concepts and Experiments (6th ed). John Wiley & Sons. Inc 2010.
- 2. Bruce Alberts and Dennis Bray, Essential Cell Biology, (4th ed), Garland Science. 2013,
- 3. De Robertis, E.D.P. and De Robertis, E.M.F. Cell and Molecular Biology. (8th ed). Lippincott Williams and Wilkins, Philadelphia. 2010.
- 4. Cooper, G.M. and Hausman, R.E. The Cell: A Molecular Approach. (5th ed). Sunderland, Mass. Sinauer Associates, Inc. 2013.
- 5. Harrison's Endocrinology by J. Larry Jameson Series: Harrison's Specialty, 19th Edition Publisher: McGraw-Hill, Year: 2016.

Reference Books

- 1. Cell and Molecular Biology by Gupta P.K 5th edition 2017.
- 2. John E. Hall, Guyton and Hall Textbook of Medical Physiology (12th ed), Saunders 2010.
- 3. Wayne M. Baker the World of the Cell. (7th ed). Pearson Benjamin Cummings Publishing, San Francisco. Cell Biology 2008.

Website and e-learning source

- https://www.genome.gov/genetics-glossary/Cell-Cycle
 https://my.clevelandclinic.org/health/diseases/16083-infertility-causes https://www.webmd.com/heartburn-gerd/reflux-disease
- 2. https://www.gu.se/en/biological-environmental-sciences/our-research/more-about-our-research-subjects/physiology-cell-biology
- 3. https://medicine.osu.edu/departments/physiology-and-cell-biology

Course Learning Outcomes (for Mapping with POs and PSOs)

COs	CO Description	Cognitive Level
CO1	Specifically understand the biological and chemical processes within a human cell	K1, K2, K4, K5
CO2	Identify and prevent diseases.	K1,K2, K3, K4, K5
	Understand defects in digestion, nutritional deficiencies and	K1, K2, K3, K4, K5
CO3	intolerances, and gastrointestinal pathologies	
	Identify general characteristics in individuals with imbalances of acid-	K1, K2, K3, K4, K5
CO4	base, fluid and electrolytes.	
	Process the mechanism: the transmission of biochemical information	K1, K2, K5
CO5	between cell membrane and nucleus.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	2	3	3	2	-	2	2	2
CO2	3	3	2	2	3	3	-	3	2	2	1	2	2
CO ₃	3	3	2	2	2	-	2	-	2	-	-	2	1
CO4	3	3	2	3	3	3	1	3	2	-	1	2	2
CO5	2	3	2	2	3	2	2	2	2	2	2	3	2

Title of the Course	CLINICAL BIOCHEMISTRY	Hours/Week	06
Course Code	APCBC32	Credits	05
Category	CORE PAPER – VIII	Year & Semester	II & III
Prerequisites	B.Sc Biochemistry/ Chemistry/ Microbiology/ Plant Biotechnology	Regulation	2024-2025

- 1. To understand the need and methods of various biological sample collection.
- 2. To explicitly understand the etiopathogenesis, symptoms and complications of metabolic and hormonal disorders and the relevant diagnostic markers
- 3. To emphasize the diagnostic significance of serum enzymes in different pathologies and other Laboratory investigations of diagnostic importance so as to differentiate normal from disease
- 4. To conceive the role of inherited genes in inborn errors of metabolism and methodologies pertaining to in utero diagnosis and post-natal screening.
- 5. To get updated about electrolyte and hormonal imbalances and the biochemical tests to diagnose them.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Biochemical investigations in diagnosis, prognosis, monitoring, screening: Specimen collection – blood, (primary /Secondary specimen) urine and CSF. Preservation of biological specimens -blood, urine, CSF and amniotic fluid.; Biological reference ranges; Disorders of blood cells: Hemolytic, iron deficiency and aplastic anemia and diagnosis, sickle cell anaemia, thalassemia. Porphyrias, Thrombocytopenia, Causes of leucopenia, leukemia and leucocytosis. Disorders of blood clotting mechanism - Von willebrand's disease, Hemophilia A, B and C, diagnostic test for clotting disorders, D-dimer and its clinical significance.	CO1	K1, K2, K3, K4

		ı	
UNIT-II	Diabetes mellitus: pathology and complications: Acute change Chronic complications: Diabetic nephropathy, neuropathy, retinopathy and Diabetic foot ulcers, Random/Fasting/PP glucose testing, Impaired glucose tolerance (IGT), Impaired fasting glucose (IFT), Diagnosis-by GTT, Pre-diabetes, Gestational DM, Hypoglycemia and critical alert value for glucose, HBA1C variants. Markers of complications of Diabetes mellitus: Metabolic syndrome, Lipid profile & lipoproteinemia, Atherosclerosis, Diabetic nephropathy, Microalbuminuira, eGFR. Point of care testing for glucose (Glucometers) and continuous glucose monitoring (CGM): principle and its use. Major groups of anti-diabetic drugs. Diet and life style modifications.	CO2	K1, K2, K3,K4
UNIT-III	Diagnostic Enzymology: Clinically Important Enzymes and Isoenzymes as diagnostic markers: Clinical significance of AST, ALT, ALP, ACP, CK, γ-GT, amylase, pseudo cholinesterase and their pattern in .Myocardial infarction; Liver disease, Bone disease, Muscle disease, Cancer (tumor markers), GI tract pancreatitis); Enzymes as therapeutic agents. Pre- and post-natal testing: Amniocentesis, prenatal detection of inborn errors of metabolism in developing fetus- Autosomal recessive mode of inheritance- cystic fibrosis, X linked recessive inheritance-Duchene muscular dystrophy. Tandem mass spectrometry application in NBS.	CO3	K1, K2, K3, K4,K5
UNIT-IV	Liver function tests: Liver function test panel, Fatty liver. Plasma protein changes in liver diseases. Hepatitis A, B and C. Cirrhosis and fibrosis. Portal hypertension and hepatic coma. Acute phase proteins CRP, Haptoglobins, α-fetoprotein, ferritin and transferrin and their clinical significance, Interpreting serum protein electrophoresis. Inflammatory markers (cytokines such as TNF-alpha IL6 and others).	CO4	K1,K3, K4, K5
UNIT-V	Renal function tests - tests for glomerular and tubular function-Acute and chronic renal failure-Glomerulonephritis, Nephrotic syndrome, uremiaurinary calculi-Nephrocalcinosis and Nephrolithiasis-causes, pathology and symptoms. Chronic kidney disease. Dialysis-Hemodialysis and peritoneal dialysis. Electrolyte disorder: calcium: hypercalcemia and hypocalcemia; Calcium homeostasis in Blood; phosphate: hyperphosphatemia or hypophosphatemia; Clinical significance: Potassium: hyperkalaemia and hypokalaemia, Sodium: hypernatremia and hyponatremia; Chloride: hyperchloremia, hyporchloremia.		K1,K3, K4, K5

- 1. Thomas M. Devlin Textbook of Biochemistry with Clinical Correlations (7th ed). John Wiley & Sons 2014.
- 2. Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics (8th ed), Saunders 2018.
- 3. Dinesh Puri, Text book of Biochemistry: A clinically oriented approach 4th Editions, Elsevier. 2020
- 4. M.N.Chatterjee and Rana Shinde. Textbook of Medical Biochemistry (8th ed), Jaypee Brothers Medical Publishers, 2012.

Reference Books

- 1. Clinical Case Discussion In Biochemistry A Book On Early Clinical Exposure (ECE), Poonam Agrawal, CBS Publishers & distributors pvt. Ltd, 2021.
- 2. Text book of Clinical biochemistry by Ramnik Sood, 2025.
- 3. Clinical biochemistry metabolic and clinical aspects with access code 3ed, 2014.

Website and e-learning source

- 1. Utility of HIL in Clinical Chemistry: https://www.aacc.org/science-and-research/clinical-chemistry-trainee council/trainee-council-in-english/pearls-of-laboratory medicine/2018/utility-of-hil-in-clinical-chemistry
- 2. Pre, Post and Analytical Errors in Clinical Chemistry laboratory DOI: 10.7860/NJLM/2016/22587:2173 https://doi.org/10.2147/JMDH.S286679
- 3. Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers https://diabetesjournals.org/clinical/article/40/1/10/139035/Standards-of Medical-Care-in-Diabetes-2022 https://doi.org/10.2337/diaspect.16.1.32 http://www.ngsp.org/
- 4. Quality control in clinical laboratory

https://www.researchgate.net/publication/335830829_Quality_Control_in_Clinical_Laboratory

https://labpedia.net/quality-control-of-the-clinical-laboratory/

https://journals.sagepub.com/doi/full/10.1016/j.jala.2008.12.001

https://doi.org/10.1016/B978-0-12-407821-5.00004-8 https://www.westgard.com/clia.htm

Course Learning Outcomes (for Mapping with POs and PSOs)

COs	CO Description	Cognitive Level
CO1	Appreciate the biological significance of sample collection and awareness of the diagnostic/screening tests	K1, K2, K3, K4
CO2	Understand the etiology of metabolic diseases and prognostic markers.	K1, K2, K3
CO3	Understand the diagnostic application of serum/plasma enzymes associated with specific diseases.	K1, K2, K3,K4,K5
	Appreciate the role of pre and post-natal diagnosis leading to healthy	K1,K3,K4,K5
CO4	progeny.	
	Link the serum hormone levels and clinical symptoms with underlying	K1,K3,K4,K5
CO5	hormonal disturbances.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	2	3	3	2	-	-	1	3	2	1
CO ₂	3	3	2	3	2	2	2	-	1	1	2	1	2
CO ₃	3	3	2	2	2	2	-	1	-	-	3	2	1
CO4	2	2	3	3	2	1	2	1	2	1	2	2	2
CO5	3	3	2	3	3	3	-	1	-	2	3	2	1

Title of the Course	PRACTICAL III: CLINICAL BIOCHEMISTRY	Hours/Week	06
Course Code	APCPBC 34	Credits	05
Category	CORE – IX	Year & Semester	II & III
Prerequisites	B.Sc Biochemistry/ Chemistry/ Microbiology/ Plant Biotechnology	Regulation	2024-2025

- 1. To instill skill in students enabling them to apprehend the wider knowledge about principles and techniques to be employed for the investigation of biological samples, clinical approach, normal values of biochemical constituents and clinical interpretations.
- 2. To inculcate the knowledge of collection, preservation of blood sample and learning various hematological parameters and their significance.
- 3. To perform experiments to assess liver functions. And also to study the marker enzymes of liver
- 4. To evaluate lipid profile and assess their relation to cardiac function.
- 5. To perform experiments to estimate blood glucose and glycosylated hemoglobin

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Hematology: RBC count, WBC count – total and differential count, ESR, PCV, MCV. Bleeding Time, Clotting Time and Estimation of hemoglobin. Determination of Electrolytes: Sodium, Potassium.	CO1	K1, K2, K3, K4, K5
UNIT-II	Liver function test: Estimation of bilirubin – direct and indirect. Estimation of plasma protein, A/G ratio, Thymol turbidity test, Prothrombin -Time (PT), Assay of serum glutamate oxaloacetate transaminase, alkaline Phosphatase.	CO2	K1, K2, K3, K4, K5
UNIT-III	Renal function test: Collection and Preservation of Urine sample Qualitative tests for normal and pathological components of urine. Estimation of blood Urea, creatinine, and uric acid.	CO3	K1, K2, K3, K4, K5
VI-TINU	Estimation of blood glucose by orthotoluidine and glucose oxidase method. Determination of glycosylated Hb - Kit method. Lipid profile: Estimation of cholesterol by Zak's method, lipoprotein profile.	CO4	K1, K2, K3, K4, K5

	Group Experiments		V1 V2 V2
	a. Antigen – Antibody Reaction - HCG kit method, RA kit method	CO5	K1, K2, K3,
>	b. Phlebotomy -Veinpuncture, Different techniques of venipuncture	CO5	K4, K5
IT	c. Collection of blood, Serum or Plasma separation and Storage		
UNIT	d.Automation in Clinical Biochemistry -Autoanalyser,		
1	Semiautoanalyser.		
	e. Isoenzyme separation of LDH by electrophoresis.		

- 1.Practical Clinical Biochemistry- Varley's by Alan H Gowenlock, published by CBS Publishers and distributors, India Sixth Edition, 1988.
- 2. Manipal Manual of Clinical Biochemistry (For Med.Lab.And Msc Stud.) (4 Edition), 2013.
- 3. Case Oriented Approach in Biochemistry-Dr. Rajesh Kawaduji Jambhulkar, Dr. Abhijit D. Ninghot: First Edition, 2019.
- 4. A Laboratory Guide Hardcover Import, by Rooma Devi (Author), Aman Chauhan (Author), Simmi Kharb (Author), 5 October 2023.

Reference Books

- 1. Practical Biochemistry Plummer, New Delhi: Tata Mcgraw Hill Publishing Company, 2000.
- 2. Introductory practical Biochemistry S.K. Sawhney, Randhir Singh, 2nd ed, 2005.
- 3. Textbook of Medical laboratory Technology by praful B. Godkar, 2024.
- 4. Henry's Clinical Diagnosis and Management by Laboratory Methods, 24e: South Asia Edition 2018.

Website and e-learning source

- 1.https://www.researchgate.net/publication/260182512.Practical_Manual_in_Biochemistry_and_ Clinical Biochemistry
- 2.https://main.icmr.nic.in/sites/default/files/upload_documents/GCLP_Guidelines_2020_Final.pdfhttps://www.westgard.com/clia.ht ml
- 3. https://www.researchgate.net/publication/263929434_Biochemistry
- 4. https://ucms.ac.in/Lectures-C-2020/Renal%20function%20Tests%20 %20PPT.pdf
- 5. https://youtu.be/i2PfjEks4GQ
- 6. https://www.euro.who.int/__data/assets/pdf_file/0005/268790/WHO guidelines-on-drawing-blood-best-practices-in-phlebotomy-Eng.pdf

Course Learning Outcomes (for Mapping with POs and PSOs)

COs	CO Description	Cognitive Level
CO1	The student will be able to acquire knowledge and skill in hematology and electrolyte techniques.	K1,K2,K3,K4,K5
CO2	The student will be able to assess the Liver Function test and interpret the biochemical investigation.	K1,K2,K3,K4,K5
	Skill to perform the Renal function test and report the abnormal	K1,K2,K3,K4,K5
CO3	parameters.	
CO4	Estimate the blood glucose content and lipid profile.	K1,K2,K3,K4,K5
	The Group Experiments will support them to acquire practical skills to	K1,K2,K3,K4,K5
CO5	work in health care sector and in clinical labs.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	2	3	2	3	3	3	2	2	2	2	2	2	2
CO ₂	2	3	2	3	2	3	-	2	-	1	2	2	2
CO3	3	3	2	2	1	2	1	-	1	-	2	1	2
CO4	3	3	2	3	3	2	-	2	-	1	2	2	1
CO5	3	3	3	3	3	3	2	1	-	2	3	1	3

Title of the Course	MOLECULAR BIOLOGY	Hours/Week	06
Course Code	APCBC 33	Credits	04
Category	CORE PAPER –X	Year & Semester	II & III
Prerequisites	B.Sc Biochemistry/ Chemistry/ Microbiology/ Plant Biotechnology	Regulation	2024-2025

- 1. To introduce the students to the process of inheritance, concepts of genes, genome, chromatin and chromosomes.
- 2. To impart a thorough understanding of the key events of molecular biology, along with DNA repair mechanisms.
- 3. To provide a detailed understanding of post transcriptional and posttranslational modifications and processing of eukaryotic RNA and proteins.
- 4. To give a detailed explanation of transcriptional regulation with lac operon and tryptophan operon as examples
- 5. To impart adequate information of the types of regulatory RNAs along with key concepts of gene silencing.

UNITS		COs	Cognitive Levels
I-TINII	Mendel's laws of inheritance-dominance-complete, incomplete and co-dominance, multiple alleles-gene mapping in haploids and diploids, recombination mapping- restriction mapping- modes of gene information transfer in bacterial- conjugation, transformation and transduction. The bacterial chromosome, the eukaryotic genome- chromosome structure – Histones, Nucleosome, chromatin- heterochromatin, euchromatin, chromatin remodeling, DNAase hypersensitive sites, genome organization – the C-value paradox, re association kinetics, repetitive sequences, gene amplification, telomeres, pseudogenes, split genes, organelle genomes – mitochondrial and chloroplast genome.	CO1	K1,K2,K3, K5

UNIT-II	DNA replication and repair: Enzymes of replication, prokaryotic replication mechanisms, primosome & replisomes, eukaryotic DNA replication, the role of topoisomerases and telomerase, regulation of replication, difference between prokaryotic and eukaryotic replication. Mutations -Types of mutations, mechanisms of mutations, mutagenic agents. DNA repair mechanisms – Direct repair, excision repair, mismatch repair, recombination repair, SOS response, eukaryotic repair systems. Recombination and mobile genetic elements- the Holliday model, the general recombination in E.coli, site specific recombination, transposons and retroposons.	CO2	K1,K2,K3, K4,K5
UNIT-III	Transcription – Prokaryotic transcription-subunits of RNA polymerase, E. coli promoters, sigma factor and promoter recognition, alternative sigma factors, initiation, elongation, Rho-dependent and independent termination of transcription. Eukaryotic transcription- Initiation, promoter elements, RNA polymerases, transcription factors, regulatory sequences in eukaryotic protein – coding genes, enhancers. Translation – organization of the ribosome, the genetic code, evidence for a triplet code, deciphering the genetic code, wobble hypothesis, deviation in the genetic code, unusual codons. The role of tRNA and rRNA, suppressor tRNAs and inhibitors of protein synthesis.	CO3	K1,K2, K4,K5
UNIT-IV	Post transcriptional modifications in eukaryotes- RNA processing- mRNA 5' capping and 3'poly-adenylation, introns and exons, RNA splicing,-spliceosome assembly, alternative splicing, processing of tRNA and rRNA, self-splicing, Ribozyme, RNA editing- substitution and insertion/deletion editing, Genome editing-CRISPR- Cas technology Post translational modification of proteins- Proteolytic cleavage, covalent modifications, glycosylation of proteins, disulfide bond formation, Protein sorting – signal peptides, transport of secretory proteins, Golgi and post-golgi sorting, coated vesicles, targeting of mitochondrial, lysosomal and nuclear proteins, Protein degradation-Ubiquitination of proteins, Protein folding-chaperones.	CO4	K1,K2,K3, K4,K5
UNIT-V	Regulation of gene expression in prokaryotes — Positive and negative control, the lac operon, identification of operator and regulator sequences by mutations, induction and repression, Foot-printing and gel-shift assays for identification of protein-DNA interactions. Catabolite repression. Trp operon — Attenuation, alternative secondary structures of trp mRNA. Regulation of gene expression in eukaryotes—Response elements, DNA binding motifs, steroid receptors, association of methylation and histone acetylation with gene expression.	CO5	K1,K2,K3, K4,K5

- 1. Lewin's Genes XII: 12th edition, Krebs JE, Goldstein ES, Kilpatrick ST; Prentice Hall, Delhi
- 2. Molecular Biology of the Gene: 6th edition, Watson JD, Baker TA, Bell S, Gann A, Levine M,

Losick R; Cold Spring Harbor Laboratory Press, New York 2012

3. Essential Cell Biology: 3rd edition, Alberts B, Bray D, Hopkin K, Johnson A, Lewis J,

Raff M, Roberts K, Walter P; Garland Science, New York

4. Molecular Cell Biology: 8th edition, Lodish H, Arnold Berk; W.H.Freeman & Co, New York 2016

Reference Books

- 1. Karp's Cell and Molecular Biology: Concepts and Experiments, 8th Edition; Wiley, India
- 2. An Introduction to Genetic Analysis 12th edition,, Griffith A. F, Doebley J, Peichel C, David A,

Wassarman DA; Albion Press.W.H.Freeman & Co, New York

- 3. Principles of molecular biology, 2nd edn1 January 2015.
- 4. Molecular cell biology 9th edition by lodish, pb 2021.

Website and e-learning source

- 1. Molecular Biology Free Online Course by MIT Part 3: RNA Uploaded by edX
- 2. https://onlinecourses.swayam2.ac.in/cec20_ma13/preview
- 3. https://learn.genetics.utah.edu/
- 4. https://www.cellbio.com/education.html
- 5. https://lifescienceinteractive.com/category/molecular-biology/

Course Learning Outcomes (for Mapping with POs and PSOs)

COs	CO Description	Cognitive Level
CO1	Comprehend the organization of genomes.	K1,K2,K3,K5
CO2	Gain knowledge about how genes are transcribed and translated in prokaryotes and eukaryotes and how these processes are regulated.	K1,K2,K3,K4,K5
CO3	Acquire knowledge of the molecular basis of RNA processing and RNA splicing and the various human pathologies that can result from defects of RNA modification	K1,K2,K4,K5
CO4	Apply the knowledge they have gained in understanding the above vital life processes to enhancing their analytical and problem solving skills and develop an interest to pursue high quality research.	K1,K2,K3,K4,K5
CO5	Comprehend the techniques of gene silencing and its applications	K1,K2,K3,K4,K5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	2	2	2	2	3	2	-	1	2	2	2	2	2
CO2	2	2	2	2	3	2	2	2	-	-	3	2	2
CO3	2	2	2	2	3	3	-	1	2	-	2	2	1
CO4	2	2	2	2	2	3	2	-	-	-	1	2	2
CO5	3	3	2	3	3	3	1	3	2	-	3	2	1

Title of the Course	BIOCHEMICAL TOXICOLOGY	Hours/Week	03
Course Code	APEBC 35	Credits	03
Category	ELECTIVE –V	Year & Semester	II & III
Prerequisites	B.Sc Biochemistry/ Chemistry/ Microbiology/ Plant Biotechnology	Regulation	2024-2025

- 1. To understand the detailed study of biochemical basis of drugs and its toxicity, particularly their actions on living systems.
- 2. To understand the relevance and methods to identify the chemotherapeutic value of drug.
- 3. To understand the fundamentals of toxicology and dose- response relationships.
- 4. To understand the toxicological drug testing procedures based on in vitro and animal studies
- 5. To understand biochemical pathways of drug toxicity and its manifestation on vital organs.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Fundamentals of Toxicology and dose-Response Relationships: Introduction Biomarkers Criteria of Toxicity New Technologies Evaluation of Toxicity Interactions; Dose Response; Measurement of Dose-Response; Relationships Linear Dose Response Hormesis; Hazard and Risk Assessment Duration and Frequency of Exposure and Effect.	CO1	K1,K2,K3, K5
UNIT-II	Factors Affecting Toxic Responses: Disposition: Absorption, Sites of absorption, distribution, Excretion; Metabolism: types of Metabolic change phase I reactions; Phase 2 reactions; control of Metabolism, Detoxification mechanism.	CO2	K1,K2,K3, K4,K5
UNIT-III	Toxicity testing; Test protocol, Genetic toxicity testing & Mutagenesis assay: In vitro test systems: bacterial mutation tests-Reversion test, Ames test, Fluctuation test, and Eukaryotic mutation test. In vivo test system Mammalian mutation test-Host mediated assay and Dominant Lethal test. Biochemical basis of toxicity: Mechanism of toxicity: Disturbance of excitable membrane function, Altered Calcium homeostasis, Covalent binding to cellular macromolecules & genotoxicity, Tissue specific toxicity.	CO3	K1,K2, K4,K5

VI-TINII	Toxic Responses to Foreign Compounds: Direct Toxic Action: Tissue Lesions; Mechanism and response in cellular toxicity, pharmacological, physiological and Biochemical effects; Developmental Toxicology-Teratogenesis; Immunotoxicity Genetic Toxicity; Chemical Carcinogenesis.	CO3	K1,K2, K4,K5
UNIT-V	Biochemical Mechanisms of Toxicity: Tissue Lesions: Liver Necrosis; kidney Damage; Lung Damage, Liver damage, Cardiac damage; Neurotoxicity; Exaggerated and Unwanted pharmacological effects; Physiological effects; Biochemical Effects: Lethal Synthesis and Incorporation, Interaction with specific Protein Receptors; Teratogenesis; Immunotoxicity; multi-Organ Toxicity.	CO5	K1,K2,K3, K4,K5

- 1. Principles Of Toxicology by: Karen E Stine, Thomas M Brown Publisher. Crc Press, 2006.
- 2. Principles of Biochemical Toxicology by John A. Timbrell Publisher: Informa Healthcare, 2008.
- 3. Environmental Toxicology by Sigmund F. Zakrzewski, Publisher: Oxford University Press, USA 2002.
- 4. Fundamentals of Toxicology-Essential concepts and applications by P.K.Gupta.2016.

Reference Books

1. Principles of Toxicology Hardcover – 16 April By Karen E. Stine (Author), Thomas M.

Brown (Author) 2015.

- 2. Modern Medical Toxicology Paperback –by VV Pillay (Author) 25 January 2023
- 3. Ecology and Toxicology by N. Arumugam, 2012.
- 4. Forensic Toxicology by Nicholas. T. Lappas and coyrtney M. Lappas Published 2016.

Website and e-learning source

- 1. https://onlinelibrary.wiley.com/journal/10990461
- 2. https://pharmacy.cuanschutz.edu/pharmaceutical-sciences/research-areas/molecular-toxicology
- 3. https://www.mdpi.com/journal/ijms/sections/molecular_toxicology
- 4. https://link.springer.com/journal/13273
- 5. https://doi.org/10.1016/C2015-0-01775-0

Course Learning Outcomes (for Mapping with POs and PSOs)

COs	CO Description	Cognitive Level
CO1	To appreciate and understand the role of dose response to assess drug toxicities.	K1, K2, K3, K5
CO2	To conceive the role of disposition of drug in human system and their metabolism and methodologies pertaining to toxicological studies.	K1, K2, K3,K4,K5
CO3	To understand and evaluate the functions of different organs on drug disposition and associated drug toxicities.	K1, K2, K4,K5
CO4	To acquire knowledge on toxic response to foreign compounds and their pharmacological, physiological and biochemical effects.	K1,K2,K4,K5
CO5	To know the mechanism of toxicity and their physiological effects.	K1,K2,K3,K4,K5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	2	2	2	-	2	3	2	2
CO2	2	2	2	2	2	2	2	2	2	-	3	3	2
CO3	3	2	2	2	2	3	-	-	2	-	3	2	1
CO4	2	2	2	2	2	3	-	3	-	2	2	1	2
CO5	2	2	2	2	2	3	2	2	2	2	3	3	2

Title of the Course	MOLECULAR BASIS OF DISEASES AND THERAPEUTIC STRATEGIES	Hours/Week	03
Course Code	APSBC 36	Credits	02
Category	Skill Enhancement Course [SEC] - II	Year & Semester	II & III
Prerequisites	B.Sc Biochemistry/ Chemistry/ Microbiology/ Plant Biotechnology	Regulation	2024-2025

- 1. To understand the concepts of the mechanisms involved in regulation of blood sugar and management of diabetes mellitus.
- 2. To gain in-depth knowledge of the mechanisms of cancer and of tumor metastasis.
- 3. To study the central and peripheral nervous system that coordinates the sensory and motor functions of the body.
- 4. To gain knowledge in renal diseases.
- 5. To understand the mechanisms involved in cardiac disorders.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Mechanism of blood sugar regulation in human body. Pathophysiology of Type I and II diabetes, Diabetes – investigation methods for the diagnosis of diabetes. Nutritional care. Complications related to diabetes – Diabetic cardiovascular disease, retinopathy, neuropathy and nephropathy. Cellular and molecular mechanism of development of diabetes- Management of Type I and Type II diabetes, drugs for the treatment of diabetes.	CO1	K1,K2,K3, K5
UNIT-II	Biology of cancer: Overview of hallmarks of cancer. Tumorigenesis, Tumor progression and mechanism of Metastasis. Proto-oncogene to oncogene. Oncogene- myc and src family. Tumor suppressor gene-Rb and p53 pathway in cancer. Molecular techniques in cancer diagnosis - Non-invasive imaging techniques, Interventional radiology, New imaging technique, treatment of cancer- surgery, radiotherapy, chemotherapy, hormonal treatment, and biological therapy. Introduction to personalized medicine.	CO2	K1,K2,K3, K4,K5

UNIT-III	Brain- neuronal network- memory- Neurogenerative diseases- Parkinson and Alzheimer Disease- molecular understanding of the neurodegenerative diseases- treatment modalities.	CO3	K1, K2, K3, K4
UNIT-IV	Acute and chronic renal failure, glomerular diseases glomerulonephritis, nephritic syndrome, diabetes insipidus, diagnosis of kidney disease- treatment modalities.	CO4	K1,K2,K3, K4,K5,
UNIT-V	Introduction to cardiovascular diseases, Lipids and lipoproteins in coronary heart disease-cardiac enzymes, Molecular changes during cardiac remodeling – hypertrophy of hearts – heart failure- treatment modalities.	CO5	K2,K3,K4, K5,

- 1. Wills' Biochemical Basis of Medicine: 2nd edition, Thomas H, Gillham B; Elsevier, 2020.
- 2. Molecular Biochemistry of Human Diseases, Feuer, CRC Press 2021.
- 3. Molecular Targets and Therapeutic Interventions against Neurodegenerative Diseases Edited By Vaishali Manikrao Patil, Dileep Kumar, Neeraj masand, 2025.

Reference Books

- 1. Molecular Pathology by William B.Coleman and Gregory. J Tsongalis published, 2009.
- 2. The Biochemical basis of disease: Barr AJ; Portland Press, 2018.
- 3.Molecular Pathology of Lung Diseases By: Jaishree Jagirdar (Edited), Abida Haque (Edited), Dani S Zander (Edited), Helmut Popper (Edited), Dani S. Zander (Edited) | Publisher: Springer | Publisher Imprint: Springer, 2007.

Website and e-learning source

- 1. https://www.biologydiscussion.com/diseases-2/biochemical-basis of-diseases/44276
- 2. https://link.springer.com/book/10.1007/978-94-007-0495-4
- 3. https://www.sciencedirect.com/journal/biochimica-et-biophysica-acta-bba-molecular-basis-of-disease/publish/guide-for-authors.

Course Learning Outcomes (for Mapping with POs and PSOs)

COs	CO Description	Cognitive Level
CO1	Overall view about the complications of diabetes mellitus and its management.	K1,K2,K3,K5
CO2	Comprehensive understanding of the concepts of cancer biology and implicating the theoretical concepts for further research	K1,K2,K3,K4,K5
	Understand and appreciate the Pathophysiology of conditions	K1,K2,K3,K4
CO3	affecting the nervous system.	
	A thorough knowledge of renal and cardiac diseases with emphasis	K1,K2,K3,K4,K5
CO4	related to mechanistic aspects and therapeutic interventions.	
	A thorough knowledge on the experimental models of non	K1,K2,K3,K4,K5
CO5	communicable diseases that will be applied for future research or	
	project dissertation.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	3	2	3	3	3	1	1	2	1	3	1	2
CO ₂	3	3	2	3	3	2	-	1	-	1	3	2	3
CO3	3	2	1	3	3	-	1	-	1	2	2	1	2
CO4	3	3	2	3	3	1	2	1	1	1	2	2	2
CO5	2	2	1	3	2	3	_	-	1	2	3	3	2

Title of the Course	GENE EDITING, CELL AND GENE THERAPY	Hours/Week	06
Course Code	APCBC41	Credits	05
Category	Core paper XI	Year & Semester	II & IV
Pre requisites	B.Sc Biochemistry / Chemistry / Microbiology / Plant Biotechnology	Regulation	2024

- > To train the student in techniques related to the molecular basis of genetic diseases.
- > To impart practical knowledge on comparing the animal models used to model genetic diseases.
- > To introduce knowledge about wide varieties of vectors and their features.
- > To acquire knowledge on stem cells and tissue Regeneration
- > To provide an understanding about the characteristics of cell culture, therapeutic strategies in gene therapy.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Gene Editing: Basis of gene editing. DNA Repair mechanisms, Double strand DNA Breaks, Non homologous End Joining (NHEJ), Homology directed repair, Programmable nucleases for gene editing, Mega nucleases, Zinc-Finger nucleases, Transcription Activator- Like Effector Nucleases (TALEN), CRISPR-Cas systems, gene editing using CRISPR-Cas, drawbacks and major challenges to present gene editing techniques, Gene editing for human disease therapy.	CO1	K2, K3, K4, K5
UNIT-II	Gene and cell therapy: Basics of Gene and cell therapy, types of gene therapy, gene therapy strategies, therapeutic targets for gene therapy, choice of the therapeutic target, administration routes, delivery systems, expression of transgene, persistence of the gene therapy, cell targeting, immunological response to the therapy, ethical and legal issues, concerns about gene and cell therapy.	CO2	K1, K2

UNIT-III	Vectors for Gene therapy: Non-viral and viral vectors for gene therapy, Physical methods of gene delivery, Polymer, Lipid and inorganic material based chemical systems for gene delivery, Viral vectors, Herpes Simplex virus, vaccinia, baculoviral vectors for gene delivery, choice of viral vector and oncolytic virus. Gene therapy applications, Gene therapy for cancer, suicide and oncolytic gene therapy.	CO3	K1, K2, K3, K4
UNIT-IV	Stem cells and tissue regeneration: Adult and fetal stemcells, embryonic stem cells, cell reprogramming, induced pluripotent stem cells (iPSC), Chemically induced pluri potent stem cells (CiPSC), reprogramming factors, iPSC derived progenitors 'cells, Organoids, three dimensional (3D) bio printing.	CO4	K1, K2, K3
UNIT-V	Regulatory and Ethical Considerations of stem cell and Gene Therapy, pluripotent stem cell-based cell replacement therapies. Assessing Human Stem Cell Safety, Use of Genetically Modified Stem Cells in Experimental Gene Therapies. Technological challenges towards development of pluripotent stem cell-based cell replacement therapies.	CO5	K1, K2, K3

- 1. An Introduction to Human Molecular Genetics(2 nd Edition), J.J. Pasternak, 2005.
- 2. An Introduction to Molecular Medicine and Gene Therapy 1st Edition by Thomas F.Kresina Upadhyay,S.K. (Ed.).2021.
- 3. Human Molecular Genetics (5th Edition), Tom Strachan & Andrew Read, 2018
- 4.Stem Cells Hand book: Stewart Sell, Humana Press; Totowa NJ,USA;Oct.2003

Reference Books

- 1.Stem Cell Biology, Daniel Marshak, Richard L. Gardener and David Gottlieb, Cold Spring Harbour Laboratory Press,2001.
- 2. Stem Cell Biology and Gene Therapy. Quesen berry PJ, Stein GS, eds. (£65.00.) Wiley,2025.
- 3. Stem Cell and Gene-Based Therapy: Frontiers in Regenerative Medicine, Alexander Battler, 6th Edition, 2015.

Website and e-learning source

- 1. https://www.thermofisher.com/in/en/home/life-science/genome-editing/genome-editing-learning-center.html
- 2. https://www.takarabio.com/learning-centers/gene-function/gene-editing?srsltid=AfmBOoqRKZea6kmIw3Aed6jWInrFGQmPtq8kZcqbziYeBljCJILQj 16
- 3. https://www.bio-rad.com/en-us/applications-technologies/crispr-cas-gene-editing-teaching-resources?ID=O58I0DWDLBV5
- 4. https://patienteducation.asgct.org/gene-therapy-101/vectors-101 https://www.genome.gov/genetics-glossary/ Cell-Membrane

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Evaluate scientific articles within the subjects of gene therapy.	K2, K3, K4, K5
CO2	Understand the therapeutics target for gene therapy.	K1, K2
CO3	Analyze the diseases that can be treated with immune therapy.	K1, K2, K3, K4
CO4	Discuss on Stem cells and Tissue regeneration Process.	K1, K2, K3
CO5	Discuss on ethical and social aspects using immune, gene or cell therapy.	K1, K2, K3

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	2	2	2	3	2	3	2	2	1	1	1	2	2
CO2	2	2	2	2	2	2	2	2	2	1	2	2	2
CO ₃	3	2	2	1	2	2	2	2	1	1	2	1	2
CO4	3	3	2	2	2	2	2	3	1	2	2	2	2
CO5	3	3	2	2	2	3	2	2	2	1	2	2	2

Title of the Course	PHARMACEUTICAL BIOCHEMISTRY	Hours/Week	06
Course Code	APCBC42	Credits	05
Category	Core XII	Year & Semester	II & IV
Pre requisites	B.Sc., Biochemistry / Chemistry / Microbiology / Plant Biotechnology	Regulation	2024

- > To understand the different types of bioinformatics tools for drug discovery.
- > To appraise knowledge on different bioinformatics tools aid in the process of target identification and Drug screening.
- > To impart knowledge on the involvement of different metabolic pathways involved in drug metabolism.
- > To understand the biochemical basis of drug action at the target tissue.
- > To acquire Knowledge on different phases in drug clinical trials and its assessment.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Drug discovery and development, drug target identification and validation, Hit identification, General principles of screening, correlations between various animal models and human situations, Correlation between in-vitro and in-vivo screens; Special emphasis on cell-based assay, biochemical assay, radiological binding assay, Pharmacological assay, In vitro, In vivo & Ex-vivo experiments, lead optimization, preclinical studies.	CO1	K1, K2, K3
II-TINO	Bioinformatics approaches for drug development: Identification of potential molecules, chemical compound library preparation, Identification of target in pathogen, Ligand & protein preparation, Molecular docking, Binding free energy estimation, High throughput virtual screening, Docking protocol validation and enrichment analysis, Single point energy calculation, Pharmacokinetics and Pharmacodynamics, ADME & toxicity prediction, Molecular dynamic simulation, Rule of three and five, Lipinski rule, Pharmacophore development, 3D-QSAR, Techniques of developing a pharmacophore map covering both ligand based and receptor based approaches.	CO2	K1, K2, K3, K4

UNIT-III	Drug metabolism & interactions: Drug-receptor interactions, receptor theories and drug action, Xenobiotics, Xenobiotics phases (Phase-I, Phase-II and Phase-III), role of cytochrome P450 oxidases and glutathione S-transferases in drug metabolism, factors affecting drug metabolism, Enzymes as a drug target, Kinase inhibitors, ATPase inhibitors, drug protein interaction, Drug DNA interaction. Basic ligand concepts-agonist, antagonist, partial agonist, inverse agonist, efficiency and potency. Forces involved in drug-receptor complexes. Receptor classification—the four super families. Receptor binding assays-measurement of Kd, Bmax and IC ₅₀ .	CO3	K1, K2 K3, K4
UNIT-IV	Biochemical mode of action of antibiotics- penicillin and Chloramphenicol, actions of alkaloids, antiviral and ant malarial substances. Biochemical mechanism of drug resistance-Sulphonamides. Drug potency and drug efficacy. General principles of chemotherapy: chemotherapy of parasitic infections, fungal infections, viral diseases. Introduction to immune modulators and chemotherapy of cancer.	CO4	K1, K2 K3, K4
UNIT-V	Clinical trials (Phase-I, Phase-II, Phase-III and Phase-IV clinical trial). Main features of clinical trials, including methodological and organizational considerations and the principles of trial conduct and reporting. Key designs surrounding design, sample size, delivery and Assessment of clinical trials.	CO5	K1, K2

- Practical Application of Computer-Aided Drug Design, Ed. Charifson P., Marcel Dekker Inc. 1997
- 2.3D QSAR in Drug Design: Theory, Methods and Applications, Ed. Kubinyi H., Ledien, 2011
- 3.Pharmaceutical Profiling in Drug Discovery for lead selection, Borchardt RT Kerns,EH,Lipinski CA,Thakker DR and Wang B, AAPS Press,2014.
- 4. Drug Discovery and Development; Technology in Transition. HP Rang. Elsevier Ltd 1st edition 2006.
- 5. Pharmacology in Drug Discovery.T.P.Kenakin.Elsevier, $3^{\rm rd}$ Edition 2024.

Reference Books

- 1.Text book of Drug Design. Krogsgaard-Larsen, Liljefors and Madsen (Editors), Taylor and Francis, London UK, 2012.
- 2. Drug Discovery Handbook S.C.Gad (Editor) Wiley-Interscience Hoboken USA, 2017.

Website and e-learning source

- 1. https://www.schandpublishing.com/books/tech-professional/medical/pharmaceutical-biochemistry/9788121942485/?srsltid=AfmBOopi5zZLdWnuarpBu2Cqg_eiK2aXuYg0_MkbK0PJ7X2URAnmOgV00
- 2. https://shop.elsevier.in/medicine/biochemistry-chemistry

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Explain the basic concepts of drug discovery and drug development process.	K1, K2, K3
	Review the different software and computational tools which aid in the design of drugs.	K1, K2, K3, K4
CO3	Analyze the different stages of the drug discovery process with the target.	K1, K2, K3, K4
~~4	Enumerate the biochemical mode of action of antibiotics and mechanism of Drug Resistance.	K1, K2, K3, K4
1 (().)	Understand the various phases of the clinical trials and the method of conduct of clinical trials.	K1, K2

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	3	2	3	1	1	2	2	2
CO ₂	3	3	2	1	2	2	2	2	2	1	2	2	2
CO ₃	2	2	2	2	1	2	2	2	1	1	2	3	3
CO4	3	3	2	2	2	2	2	2	1	2	2	2	3
CO5	2	2	1	2	2	2	1	2	2	1	2	2	2

Title of the Course	PROJECT WITH VIVA VOCE	Hours/Week	10
Course Code	APPBC43	Credits	07
Category	Core Paper-XIII	Year & Semester	II & IV
Prerequisites	B.Sc., Biochemistry / Chemistry / Microbiology / Plant Biotechnology	Regulation	2024

Title of the Course	INDUSTRIAL MICROBIOLOGY	Hours/Week	04
Course Code	APEBC44	Credits	03
Category	Elective-VI	Year & Semester	II & IV
Prerequisites	B.Sc., Biochemistry / Chemistry / Microbiology / Plant Biotechnology	Regulation	2024

- To gain knowledge on the structure, classification and uses of microorganisms in various industries.
- > To equip skills in fermenter designs, culture systems and the application of fermentation process in Industry.
- To understand the production and purification of fermented products and their industrial applications.
- > To impart knowledge on the basic concepts of food and agricultural microbiology.
- To make familiraize about the Biofertilizers and its Production.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Structure of bacteria, fungi and viruses and their classification. Types And characteristics of microorganisms used in Industry (a) Food Industry, (b) Chemical Industry, (c) Pharmaceutical Industry	CO1	K1, K2
UNIT-II	Fundamentals and principles of microbial fermentation techniques –application in industry and pharmaceutical Biochemistry. Fermentation – types, techniques, design and operation of fermenters including addition of medium. Types and characteristics of microorganisms, environmental conditions required for the growth and metabolism of industrially and pharmaceutically important microbes. Sterilization methods in fermentation techniques, air, gas, culture medium sterilization. Steam-Filtration and chemicals.	CO2	K1, K2, K3 K4

	<u></u>		,
UNIT-III	Recovery and estimation of products of fermentation- Production of ethanol, acetic acid, glycerol, acetone, butanol and citric acid by fermentation. Production of Enzymes-amylase, protease, lipase, Production of pharmaceuticals by fermentation penicillin, streptomycin, tetracycline, riboflavin, vitaminB12. Beverages-wine, beer and malt beverages.		K1, K2
VI-TINU	Food Microbiology: Production of dairy products-bread, cheese and yoghurt (preparation and their types). Food borne diseases-Bacterial and Non- Bacterial. Food preservation - Principles—Physical methods: temperature (low, high, canning, drying), irradiation, hydrostatic pressure, high voltage pulse, microwave processing and aseptic packaging, Chemical methods-salt, sugar, organic acids, SO ₂ ,nitrite and nitrates, ethylene oxide, antibiotics and bacteriocins.	CO4	K1, K2
UNIT-V	Agricultural Microbiology: General Properties of soil, microorganisms in soil – decomposition of organic matter in soil. Biogeochemical cycles, nitrogen fixation, Production of bio fertilizers and its field applications – Rhizobium, azotobacter, blue green algae, mycorrhizae, azospirilium, Production of biofuels (biogas- methane), soil inoculants.	CO5	K1, K2, K3

- 1. Food Microbiology: An Introduction: 4th edition, Matthews KR, Kniel KE, Montville TJ; American Society for Microbiology.2017.
- 2. Food, Fermentation and Micro-Organisms, 2nd edition, Charles, BW; Blackwell Science Ltd.2019.
- 3. Microbiology.5th edition, Pelczar MJ, Chan ECS and Krieg NR; McGraw Hill Book, East-West press Company.2023.
- 4. Textbook of Microbiology: 11th edition, Anantha narayanan R and Paniker CKJ; Universities Press (India) Pvt. Ltd.2020.
- 5. Food Microbiology, 7th edition, Frazier WC and Westhoff DC; Tata McGraw Hill Publishing Company Ltd, New Delhi 2025.
- 6. New Methods of Food Preservation: 1st edition, Gould GW; Springer Manual of Industrial Microbiology and Biotechnology: 5th edition, Baltz 2006.

Reference Books

- 1. Text Book of Industrial Microbiology Hardcover by Dr. R.D. Joshi (Author) ISBN 978-9350303115 Oxford Publishers. 1 January 2017.
- 2. Advances in Microbiology by Arunima Mukerjee (Author) ISBN 978-8189473440 Oxford Book Company.1 August 2009.

Website and e-learning source

- 1. https://www.wiley.com/en-us/Industrial+Microbiology-p-9783527697311
- 2. https://www.appleacademicpress.com/industrial-microbiology-current-progress-and-novel-technologies/9781779642202
- 3. https://food.technotes.com/wp-content/uploads/2020/06/Essentials-of-Industrial-Microbiology.pdf
- 4. https://4lfonsina.wordpress.com/wp-content/uploads/2012/11/industrial-microbiology-an-introduction-0632053070-wiley.pdf

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level
CO1	Understand the structure and classification of microorganisms.	K1, K2
CO2	Utilize the microorganisms in various industrial applications.	K1, K2, K3, K4
CO3	Understand the concepts of fermentation process.	K1, K2
CO4	Understand the types of microbial fermentation processes and their applications in pharmaceutical industry.	K1, K2
CO5	Explain about the use of microorganisms in beverages.	K1, K2, K3

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	2	1	2	1	2	2	2	2	1	1	2	1	1
CO2	3	3	2	2	2	3	3	2	2	1	2	2	2
CO3	2	2	2	2	1	2	2	2	1	1	2	2	1
CO4	3	2	1	2	2	2	2	1	1	2	2	1	2
CO5	2	2	2	1	1	2	2	2	2	1	2	1	2

Title of the Course	DEVELOPMENTAL BIOLOGY AND ENDOCRINOLOGY	Hours/Week	04
Course Code	APSBC45	Credits	02
Category	Skill Enhancement Course	Year& Semester	II & IV
Prerequisites	B.Sc., Biochemistry / Chemistry / Microbiology / Plant Biotechnology	Regulation	2024

- > To understand the background of developmental biology.
- > To gain insights into morphogenesis and organogenesis
- > To gain insight into aspects of hormones
- > To acquire in-depth understanding of various endocrine glands
- > To understand the gonadal hormones.

UNITS	Contents	COs	Cognitive Levels
UNIT-I	Principles of developmental biology —Potency, commitment, specification, induction, competence, determination and differentiation; morphogenetic gradients; cell fate and cell lineages; stem cells; genomic equivalence and the cytoplasmic determinants; imprinting; mutants and transgenic sin analysis of development. Gametogenesis—production of gametes, Formation of zygote, fertilization and early development: molecules in sperm-egg recognition in animals.	CO1	K1, K2
UNIT-II	Morphogenesis & Organogenesis: Cell aggregation and differentiation in Dictyostelium; axes and pattern formation in Drosophila, amphibia and chick; organogenesis – vulva formation in Caenor habditiselegans, eye lens formation, limb development and regeneration in vertebrates; differentiation of neurons, post embryonic development- larval formation, metamorphosis; environmental regulation of normal development; sex determination.	CO2	K1, K2, K3

UNIT-III	Hormones-Definition, Chemical nature and classification. Mechanism of action of Group I and Group II hormones, Signal transduction and introduction to Hormonal receptors (Tyrosine receptors). Positive and negative feedback regulation of endocrine system. Hypothalamus and hypothalamic releasing factor. Pituitary hormones- Chemistry, Secretion, Functions and Regulation. Anterior Pituitary hormones-GH, Pituitary tropic hormones (LH, FSH, TSH, ACTH and Prolactin and Posterior Pituitary hormones (Vasopressin and Oxytocin).	CO3	K1, K2, K3
UNIT-IV	Thyroid and Parathyroid Hormones-Chemistry, Synthesis, Secretion, Functions and Regulations. Pancreatic Hormones-Chemistry, Secretion, Functions and Regulations (Insulin and Glucagon). Adrenal gland hormones-Chemistry, Secretion, Functions and Regulations of Adrenal Cortex hormones (glucocorticoids and mineralocorticoids) and Adrenal Medullary hormones (Epinephrine and Nor-Epinephrine). Renin-angiotensin system.	CO4	K1, K2
UNIT-V	Chemistry, Secretion, Functions and Regulations of Gonadal hormones—Testosterone, Estrogen and Progesterone. Ovarian cycle and its regulation.	CO5	K1, K2

- 1. Developmental biology: VIII edition, Gilbert, SF; Sinauer Associates, Harper's Illustrated Biochemistry(Murray Robert),2014.
- 2. Textbook of Endocrinology, 1^s edition, I.Niyas Ahamed,(Association of Indian Biologists publications.)2018.
- 3. Developmental Endocrinology: From Research to Clinical Practice Paperback Illustrated by Erica A. Eugster (Editor), Ora Hirsch Pescovitz (Editor) December 2012.

Reference Books.

- 1. Developmental Biology by Scott F. Gilbert (Author) ISBN 978-0878933846 Published by Sinauer associates Inc Hardcover -3^{rd} Edition,15 April 2020.
- 2. Developmental Biology: Diverse Aspects Hardcover Import, 7 by Leonard Roosevelt (Editor) Publisher Syrawood Publishing House ISBN-13978-1682866771. June 2019.
- 3. Basic Developmental Biology by Prof. Geetha Unnikrishnan AkiNik Publications, ISBN 978-93-5570-360-6,2022.

Website and e-learning source

- 1. https://www.ijam.co.in/index.php/ijam/article/view/1326 (Krumi(Microorganisms) in Ayurveda- a critical review).
- 2. Virtual Lectures in Microbiology and Immunology, University of Rochesterhttps://www.frontiersin.org/articles/10.3389/fphar.2020.578970/full#h9.
- 3. https://www.frontiersin.org/articles/10.3389/fmicb.2018.02151/full.
- 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559905/

Course Learning Outcomes (for Mapping with POs and PSOs)

On completion of the course the students should be able to

COs	CO Description	Cognitive Level		
CO1	Understand the cell differentiation and Gametogenesis.	K1, K2		
CO2	Explain about cell aggregation and embryogenesis.	K1, K2, K3		
CO3	Discuss about the classification of Hormones and their Receptors.	K1, K2, K3		
CO4	Understand the synthesis and functions of Adrenal and Thyroid Gland hormones.	K1, K2		
CO5	Understand the basics of Gonadal hormones and its Regulation.	K1, K2		

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3
CO1	2	2	2	1	1	2	2	2	2	1	1	1	2
CO ₂	2	2	1	2	1	2	2	1	1	1	1	1	2
CO3	3	2	2	1	2	2	2	2	1	2	2	2	3
CO4	2	2	2	2	2	2	2	2	2	1	2	2	2
CO5	2	2	2	2	2	2	2	2	1	1	2	2	2